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Motivation

• Problem: rising and varying traffic demand

• Objective: deliver traffic with the best possible performance

• SPF does not consider demand, other paths or the influence of its routing decisions

• Overprovisioning → higher costs

• Enterprises such as Facebook use Software-Defined Networking (SDN)



Investigation of Reinforcement Learning Strategies for Routing in Software-Defined Networks
Deutsche Telekom Chair for Communication Networks / TU Dresden
Presentation Diploma Thesis // 7.11.2019

Slide 3

Motivation
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Reinforcement Learning

Agent interacts with the environment

State 𝑠, Action 𝑎, Reward 𝑟

Q-value 𝑄(𝑠, 𝑎) – Quality of action 𝑎 in state 𝑠

Q-learning for determining 𝑄(𝑠, 𝑎)

Q-table:

𝑄(𝑠, 𝑎) 𝑎1 𝑎2

𝑠1 𝑄(𝑠1, 𝑎1) 𝑄(𝑠1, 𝑎2)

𝑠2 𝑄(𝑠2, 𝑎1) 𝑄(𝑠2, 𝑎2)
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Implementation – States

𝑓1: 1,2,4
𝑓2: [1,2,4]

𝑓1: 1,3,4
𝑓2: [1,2,4]

𝑓1: 1,2,4
𝑓2: [1,3,4]

𝑓1: 1,3,4
𝑓2: [1,3,4]

Flow: [Path] 
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Implementation – States

Flow: [Path] 

𝑓1: 1,2,4
𝑓2: [1,2,4]

𝑓1: 1,3,4
𝑓2: [1,2,4]

𝑓1: 1,2,4
𝑓2: [1,3,4]

𝑓1: 1,3,4
𝑓2: [1,3,4]
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Implementation – Actions

𝑓1: 1,2,4
𝑓2: [1,2,4]

𝑓1: 1,3,4
𝑓2: [1,2,4]

𝑓1: 1,2,4
𝑓2: [1,3,4]

𝑓1: 1,3,4
𝑓2: [1,3,4]

Flow: [Path] 
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Implementation – Actions

Additionally “No Transition” action

𝑓1: 1,2,4
𝑓2: [1,2,4]

𝑓1: 1,3,4
𝑓2: [1,2,4]

𝑓1: 1,2,4
𝑓2: [1,3,4]

𝑓1: 1,3,4
𝑓2: [1,3,4]

Flow: [Path] 
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Implementation – Reward

Latencies determined by measurements:
𝐿 𝑓1 = 𝐿1−2 + 𝐿2−4
𝐿 𝑓2 = 𝐿1−3 + 𝐿3−4

Reward: Root mean square of latencies

𝑟 = −
𝐿(𝑓1)

2 + 𝐿(𝑓2)
2

2
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Implementation - System
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Evaluation - Topology
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Evaluation - Topology

Path 2: 28ms

Path 1: 20ms

Q-table size:
𝑄 = 32

Path with the lowest latency
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Evaluation – Topology (SPF)
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Evaluation – Topology (Optimal)

Average Latency of the flows:

𝑑 =
20 𝑚𝑠 + 2 ∙ 28 𝑚𝑠

3
= 25.3 𝑚𝑠
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Evaluation – Learning

Paths are 
selected 
randomly

Converged
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Evaluation – Load Level

How does the 
system 
perform for 
different 
loads?
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Evaluation – Load Level

First link congested

How does the 
system 
perform for 
different 
loads?
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Evaluation – Load Level

First link congested Network capacity reached

How does the 
system 
perform for 
different 
loads?
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Evaluation – Load Change

Load Level
100%

Load Level
40%

How does the 
system 
perform in a 
dynamic load 
change?
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Appendix – Load Change 

Load Level
100%

Load Level
40%

How does the 
system 
perform in a 
dynamic load 
change?
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Appendix – Load Change 

Load Level
100%

Load Level
40%

How does the 
system 
perform in a 
dynamic load 
change?
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Evaluation – Scalability

Scalability level 𝑚 - Number of flows and 
intermediate switches

Equal path latencies

Single uncongested routing state

Q-table entries:
𝑄 = 𝑚𝑚 ∙ (𝑚 ∙ 𝑚 − 1 + 1)

→ Number of entries scales exponentially
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Evaluation – Scalability
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Evaluation – Scalability

Local minimum
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Contribution

− Developed latency optimization with Reinforcement Learning

− Framework

− Capable of latency measurement and dynamic routing

− Adapts on changes of network loads

− Can be used for hardware switches

− Easily expandable or modifiable for further research

− Evaluated in an emulated environment with Mininet
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Further Research Questions 

− Scalability: 

− Limitation

− Generalization

− Bandwidth in state space

− Reward modification → different performance objectives

− Real network topologies

− Hardware switches
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Thank you for your attention
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Appendix - Q-table

Number of actions:

𝑆 = ς𝑓 ∈ 𝐹 |𝑃 𝑓 |

𝐴(𝑠) = ෍

𝑓∈𝐹

|𝑃 𝑓 | − 1 + 1

𝑄 = ෑ

𝑓 ∈ 𝐹

|𝑃 𝑓 | (෍

𝑓 ∈ 𝐹

𝑃 𝑓 − 1 + 1)

= (2 ∙ 2) ∙ (2 ∙ 2 − 1) + 1 = 12
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Appendix - Scalability

Level m Q-table 
entries

Median 
Convergen
ce steps

2 12 6.00

3 189 468.50

4 3328 3396.00
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Appendix - Learning
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Appendix – Time and Steps

After state change a time is waited to ensure that 
stationary state reached (queues were emptied or 
filled)

Then it is waited until all latencies were measured 
successfully, because the measurement packets 
could be dropped due to congestion
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Appendix – Time and Steps

𝑝 𝑑𝑟𝑜𝑝𝑝𝑒𝑑 = ൞
1 −

𝐶 𝑙

𝑏𝑓 𝑙
, 𝑏𝑓 𝑙 > 𝐶(𝑙)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑟𝑒𝑚𝑝𝑡𝑦 =
𝑏𝑑𝑖𝑓𝑓

𝑘𝑈𝐷𝑃
=

0.25 𝑀𝑏𝑖𝑡/𝑠

1512 𝑏𝑦𝑡𝑒 ∗ 8 𝑏𝑖𝑡/𝑏𝑦𝑡𝑒
= 21.67 𝐻𝑧

𝑇𝑒𝑚𝑝𝑡𝑦 =
𝐾

𝑟𝑒𝑚𝑝𝑡𝑦
=

30

21.67
𝑠 = 1.38 𝑠

𝑇𝑑𝑒𝑙𝑎𝑦 =
𝐾 ∗ 𝑘𝑈𝐷𝑃

𝐶(𝑙)
= 115.54 𝑚𝑠



Investigation of Reinforcement Learning Strategies for Routing in Software-Defined Networks
Deutsche Telekom Chair for Communication Networks / TU Dresden
Presentation Diploma Thesis // 7.11.2019

Slide 33

Appendix – Convergence Criterion

Moving average with N=40

| ҧ𝑑 𝑡 − 𝑑𝑐| < 𝜖

Smallest 𝑡𝑐 with a value 𝑑𝑐 in 
which all following values ҧ𝑑(𝑡)
are within the range 
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Appendix – Exploration vs. Exploitation

Exploitation: selecting the most promising action

Exploration: Probing another candidate action

Softmax:

𝑎 = max
𝑎 ∈𝐴(𝑠)

exp(𝑄(𝑠, 𝑎)/𝜏)

σ𝑏∈𝐴(𝑠) exp(𝑄(𝑠, 𝑏)/𝜏)

Modified Softmax:

𝑎 = max
𝑎 ∈𝐴(𝑠)

exp(−1/(𝜏𝑄(𝑠, 𝑎)))

σ𝑏∈𝐴(𝑠) exp(−1/(𝜏𝑄(𝑠, 𝑏)))

Maps Q-values to selection probabilities 
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Appendix – Exploration vs. Exploitation

Softmax:

𝑎 = max
𝑎 ∈𝐴(𝑠)

exp(𝑄(𝑠, 𝑎)/𝜏)

σ𝑏∈𝐴(𝑠) exp(𝑄(𝑠, 𝑏)/𝜏)

Modified Softmax:

𝑎 = max
𝑎 ∈𝐴(𝑠)

exp(−1/(𝜏𝑄(𝑠, 𝑎)))

σ𝑏∈𝐴(𝑠) exp(−1/(𝜏𝑄(𝑠, 𝑏)))
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Appendix – Latency Measurement
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Appendix – Latency Measurement Uncertainty

K. Phemius and M. Bouet, "Monitoring latency with 
OpenFlow”, 2013



Investigation of Reinforcement Learning Strategies for Routing in Software-Defined Networks
Deutsche Telekom Chair for Communication Networks / TU Dresden
Presentation Diploma Thesis // 7.11.2019

Slide 38

Appendix – Q-learning

𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 ∗ 𝛼 (𝑟 + 𝛾 argmax
𝑎

𝑄 𝑠′, 𝑎 − 𝑄 𝑠, 𝑎 )
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Appendix - Routing
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Appendix – Joining flows

Different flow initializations and if Q-table is merged 


