
Faculty of Electrical and Computer Engineering Institute of Communcation Technology

Diploma Thesis

Deep Reinforcement Learning for
Traffic Control
Johannes Valentin Stanislaus Busch
Born on: 31.07.1992 in Bergisch Gladbach

Course: Electrical Engineering

Discipline: Automation, Measurement and Control

Matriculation number: 3850449

Matriculation year: 2012

to achieve the academic degree

Diplomingenieur (Dipl.Ing.)

Supervisor

Dipl. Ing. Vincent Latzko
Supervising professor

Prof. Dr.-Ing. Dr. h.c. Frank Fitzek
Submitted on: 23.08.2019

Statement of authorship
I hereby certify that I have authored this Diploma Thesis entitled Deep Reinforcement Learning for
Traffic Control independently and without undue assistance from third parties. No other than
the resources and references indicated in this thesis have been used. I have marked both literal

and accordingly adopted quotations as such. There were no additional persons involved in the

intellectual preparation of the present thesis. I am aware that violations of this declaration may

lead to subsequent withdrawal of the degree.

Dresden, 23.08.2019

Johannes Valentin Stanislaus Busch

Kurzfassung
Die steigende Zahl an Fahrzeugen in Privatbesitz, in Kombination mit fortschreitender Urbanisie-

rung, verursacht zunehmend Staus und Verzögerungen in Städten auf der ganzenWelt. Viele aktu-

elle Verkehrssteuerungen werden von Hand, mittels einfacher Heuristiken, sowie teilweise durch

automatische Optimierungsalgorithmen, eingestellt. Daraus resultierende Steuerungen nutzen

bestehende Verkehrsinfrastruktur oft ineffizient, und verursachen dadurch wirtschaftlichen sowie

ökologischen Schaden. Die jüngste Entwicklung fortschrittlicher Fahrzeug-zu-Infrastruktur (V2I)

Kommunikationstechnologie ermöglicht eine bessere Verkehrsregelung, da aktuelle Verkehrsda-

ten in die Regelungsentscheidungen einfließen können. Die gewaltigen Datenmengen in eine

Kontrollentscheidung zu übersetzen, ist allerdings eine herausfordernde Aufgabe, und bedarf

der Entwicklung neuartiger Regelungsansätze. In dieser Arbeit wird ein ”Deep Reinforcement

Learning (DRL)”-Ansatz entwickelt, der die Regelung von Lichtschaltanlagen, unter Kenntnis

detaillierter Information des aktuellen Zustandes des Verkehrsnetzwerkes, ermöglicht. Unsere

Methode optimiert einen zentralen Regler, der mehrere Lichtschaltanlagen gleichzeitig steuert,

ohne dabei auf zusätzliche Koordinierungsalgorithmen zurückgreifen zu müssen. In einer

Reihe von simulierten Szenarien zeigen wir, dass die Möglichkeit, seine Umgebung durch

V2I Kommunikation wahrzunehmen, den Verkehrsregler befähigt, Staus zu reduzieren und

somit dessen wirtschaftliche und ökologische Folgen zu mindern. Wir zeigen zudem, dass

unser DRL Ansatz in der Lage ist, mehrere Zielkriterien gleichzeitig zu optimieren. Da unser

Ansatz keine Modellannahmen treffen muss, der Aktionsraum inhärent sicher gestaltet ist, und

realistische Verkehrsnetzwerke schnell modelliert, optimiert und getestet werden können, hat er

das Potenzial, die Anwendung von DRL in tatsächlichen Verkehrssteuerungen zu ermöglichen.

Abstract
The rapid increase in privately owned vehicles per capita, alongside progressive urbanisation,

causes rising levels of congestion and commuter delay in cities around the world. Current traffic

control systems often rely on simple heuristics and hand optimisation, partly accompanied by

automatic adaption, to determine reasonable traffic light signalling strategies. Implemented

policies often fail to enable efficient utilisation of the road-traffic infrastructure – harming both

economic competitiveness and environmental sustainability. The recent emergence of advanced

Vehicle to Infrastructure (V2I) communication technologies presents a potential remedy, as it

facilitates well-informed control decisions, based on the current traffic state. However, leveraging

large amounts of state information is a challenging task that asks for novel control techniques.

In this thesis, we describe the design of a Deep Reinforcement Learning (DRL) approach that

allows the control of traffic scenarios under the knowledge of elaborate state-information. This

approach centrally optimises the signalling strategy of multiple traffic lights, without the need

for second-order coordination methods. In a series of simulated traffic scenarios, we show that

the ability to observe its environment through V2I communication enables the control system

to mitigate congestion and to alleviate its economic and environmental repercussions. We

furthermore demonstrate that the DRL method, in contrast to many traditional methods, allows

the joint optimisation of multiple objective-functions. The model-free nature of our approach, the

inherent safety of control-actions, and the capacity to rapidly prototype and test a control-policy

in realistic traffic networks could enable the deployment of DRL traffic-control methods in the

real world.

Acknowledgements
I thank Vincent Latzko, my advisor, for his help and guidance, for providing me with everything

necessary to complete this thesis and for always making time when I was in need of advice.

Thanks to Frank Fitzek for making this thesis possible. Also, I thank Clara Costa Sala, Matthias

Mozdzanowski and Peter Sossalla for proof-reading this thesis and for providing feedback and

suggestions. Finally, I thank everyone at the Deutsche Telekom Chair of Communication Networks

for making me feel welcome in the group as well as for many fruitful discussions.

vii

Table of Contents
List of Figures . xiii

List of Tables . xv

Acronyms . xvii

Symbols . xix

1 Introduction 1
1.1 Motivation . 1

1.2 Objectives . 2

1.3 Structure . 3

2 Reinforcement Learning 5
2.1 Introduction to Reinforcement Learning . 5

2.2 Markov Decision Processes . 7

2.2.1 Value Functions . 10

2.2.2 Acting Optimally . 11

2.3 Tabular Learning . 13

2.3.1 Dynamic Programming . 14

2.3.2 Monte Carlo Methods . 16

2.3.3 Temporal Difference Learning . 17

2.4 Function Approximation . 21

2.4.1 Neural Network Architecture . 23

2.4.2 Learning Neural Network Parameters . 27

2.5 Deep Q-Learning . 31

2.6 Policy Gradient Methods . 32

2.6.1 The REINFORCE Algorithm . 34

2.6.2 Actor-Critic Methods . 35

2.6.3 Natural Gradients and Trust Regions . 36

2.7 Deterministic Policy Gradients . 37

2.7.1 Deep Deterministic Policy Gradients . 38

2.7.2 The Reparameterisation Trick . 39

2.7.3 Further Improvements of DDPG . 40

2.7.4 Soft Actor-Critic . 42

ix

Table of Contents

3 Road Traffic Control 45
3.1 Traffic Lights . 46

3.2 Traffic Congestion . 48

3.3 What Makes Traffic Control Hard . 49

3.4 Traditional Control Methods . 49

3.4.1 Isolated Fixed-Time Control . 50

3.4.2 Coordinated Fixed-Time Control . 50

3.4.3 Isolated Responsive Control . 51

3.4.4 Coordinated Responsive Control . 52

3.4.5 Drawbacks of Traditional Traffic Control Strategies 52

3.5 Traffic Simulation . 53

3.5.1 SUMO . 54

3.5.2 Flow . 55

3.6 Vehicle to Infrastructure Communication . 56

4 Deep Reinforcement Learning for Urban Traffic Light Control 59
4.1 Advantages of RL for Traffic Light Control . 59

4.2 Challenges of RL for Traffic Light Control . 60

4.3 Related Work . 62

4.4 A Traffic Light Control MDP . 66

4.4.1 Observations . 66

4.4.2 Control Actions . 71

4.4.3 Rewards . 72

4.5 Agent 4D7 . 73

4.5.1 Architecture . 74

4.5.2 Learning and Optimisation . 78

4.6 Real-World RL Traffic Control . 78

5 Experiments and Results 81
5.1 Simulation Setup . 81

5.2 Single Intersection . 84

5.2.1 Fixed-Cycle Strategy . 84

5.2.2 DRL: Solitary Agent . 86

5.2.3 DRL: Communicative Agent . 87

5.3 Arterial Road . 89

5.3.1 Steady Demand . 89

5.3.2 Sudden Inflow . 92

5.4 Grid . 93

5.4.1 Destination Bias . 93

5.4.2 Composite Reward Functions . 95

5.5 L’Antiga Esquerra de l’Eixample . 97

5.6 Convergence . 99

6 Summary 101
6.1 Conclusions .103

6.2 Outlook .103

x

Table of Contents

Bibliography 107

Appendices 115
A Agent4D7 Algorithm .116

B Parameter Values .117

B.1 Agent4D7 Parameters .117

B.2 Traffic Environment Parameters .117

C Additional Figures .118

C.1 Single Intersection .118

C.2 Arterial Road .119

C.3 Grid .121

C.4 L’Antiga Esquerra de l’Eixample .122

xi

List of Figures
2.1 The agent-environment loop of a Markov Decision Process. 7

2.2 Dependencies in a Partially Observable Markov Decision Process. 9

2.3 Grid-world example of a tabular environment. 13

2.4 The Policy Iteration algorithm. 15

2.5 Solving the grid-world MDP with Monte Carlo Methods and TD Learning. 18

2.6 Summary of tabular learning algorithms. 21

2.7 Example of linear function approximation. 23

2.8 Schematic of a Perceptron. 24

2.9 A Multilayer Perceptron/Deep Neural Network. 25

2.10 Some common forms of the nonlinear activation function of Neural Networks. 26

2.11 Example of the gradient descent algorithm. 28

2.12 A minimal example of the Backpropagation of Errors algorithm. 31

2.13 Action selection for value-based and for Policy Gradient methods. 33

2.14 Action distributions for discrete and continuous action-spaces. 34

2.15 Comparison of Policy Gradient methods. 38

2.16 The reparameterisation trick. 40

3.1 Example of a traffic light phase cycle. 46

3.2 Two popular phase schemes. 47

3.3 Overview of traditional control strategies . 53

4.1 Example trajectory of the observation-vector of the solitary agent. 67

4.2 Observation-space of the communicative agent. 69

4.3 Action-space of the agent. 71

4.4 Full agent-environment interaction loop. 74

4.5 Neural Network architecture of the learning algorithm. 77

5.1 The traffic network that we use in most of our simulations. 82

5.2 Experimental results for a fixed-cycle strategy at a single intersection. 85

5.3 Comparison of the solitary agent and a fixed-cycle strategy at a single intersection. . 86

5.4 Comparison of three different traffic control approaches at a single intersection. . . . 88

5.5 Comparison of average velocities for the two agents in the arterial scenario. 90

5.6 Comperison of average waiting times for the two agents in the arterial scenario. . . . 91

xiii

List of Figures

5.7 Comparison of average velocities of the two agents in the sudden inflow experiment. 93

5.8 Comparison of average velocities of the two agents in the grid scenario. 94

5.9 Comparison of results for two different reward functions in the grid scenario. 96

5.10 Comparison of results of the two agents in the L’Antigua Esquera de l’Eixample scenario. 99

C.1 Traffic network of the single intersection scenario. .118

C.2 Example of a learning curve. .118

C.3 Traffic network of the arterial scenario. .119

C.4 Average waiting times for two different demands in the arterial scenario.119

C.5 Confidence intervals of the average waiting time plots.120

C.6 Traffic network of the grid scenario. .121

C.7 Comparison of results for two different reward functions in the grid scenario.121

C.8 Traffic network of the L’Antiga Esquerra de l’Eixample scenario.122

C.9 Comparison of results for two different reward functions in the l’Antigua Esquerra de

l’Eixample scenario. .123

xiv

List of Tables
4.1 Previous Reinforcement Learning approaches for adaptive traffic signal control. . 63

4.2 Summary of the observation-space of the solitary agent. 68

4.3 Summary of the observation-space of the communicative agent. 70

5.1 Experimental results for the two agents in the single intersection scenario. 89

5.2 Experimental results for the two agents in the arterial scenario. 90

5.3 Experimental results for the two different reward functions in the grid scenario. . 97

5.4 Experimental results for the two agents in the l’Antigua Esquerra de l’Eixample

scenario. .100

B.1 Used parameter values of the Agent4D7 algorithm.117

B.2 Used parameter values of the traffic environment.117

xv

Acronyms
Acronym Expansion
A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic

ACKTR Actor-Critic using Knoecker-Factored Trust Region

ADAM Adaptive Moment Estimation

ADPG-R Asynchronous DPG with Variable Replay Steps

D4PG Distributed Distributional Deterministic Policy Gradient

DDPG Deep Deterministic Policy Gradient

DNN Deep Neural Network

DPG Deterministic Policy Gradient

DQL Deep Q-Learning

DQN Deep Q-Network

DRL Deep Reinforcement Learning

GDP Gross Domestic Product

GPI Generalised Policy Iteration

IDM Intelligent Driver Model

ITS Intelligent Transportation System

MARL Multi-Agent Reinforcement Learning

MDP Markov Decision Process

ML Machine Learning

MLP Multilayer Perceptron

MOVA Microprocessor Optimised Vehicle Actuation

MSE Mean Squared Error

NN Neural Network

OSM Open Street Map

PG Policy Gradient

POMDP Partially Observable Markov Decision Process

PPO Proximal Policy Optimisation

RL Reinforcement Learning

SAC Soft Actor-Critic

SCOOT Split Cycle Offset Optimisation Technique

xvii

Acronyms

Acronym Expansion
SGD Stochastic Gradient Descent

SUMO Simulation of Urban MObility

TD3 Twin-Delayed Deep Deterministic Policy Gradient

TDL Temporal Difference Learning

TraCI Traffic Control Interface

TRANSYT Traffic Network Study Tool

TRPO Trust Region Policy Optimisation

V2I Vehicle to Infrastructure

xviii

Symbols
Symbol Name Description

a action The action that the agent executes

σ activation function The nonlinear activation function of a Perceptron

ρ dynamics function The dynamics of the Markov Decision Process; probabalisti-

cally maps from a tuple of a state/observation and an action

to a tuple of a subsequent state and a reward

ε epsilon The probability of choosing a random action in epsilon-

greedy policies

γ discount factor The factor that determines how much future rewards are

valued

h history All past observations and states of the agent

T horizon The total number of timesteps of an episode in the environ-

ment; can be infinite

α learning rate The step-size for iterative approximation algorithms such as

gradient descent

η observation function A probabilistic mapping from states to observations

o observation The observation that that the agent can perceive of its

environment; in a fully observed setting, the observation

equals the state

π policy The policy function that maps from states/observations to

actions

Q action-value function The expected value of the future discounted return, when

starting from a given state and executing a given action

g discounted return The sum of all future discounted rewards

r reward The obtained reward in a single timestep

s state The state of the environment of the agent

V state-value function The expected value of the future discounted return, when

starting from a given state

xix

1. Introduction
1.1. Motivation
Due to rising mobility demands, transportation emerges to be an economic key sector in

developed nations, and inefficiencies in transportation networks result in high costs and com-

muter delay. In the European Union, the economic burden of traffic congestion accounts for

approximately 1% of the annual Gross Domestic Product (GDP) and is expected to further

increase within the next years (European Comission, 2017). In many metropolitan areas, the

average commuter spends over 200 hours per year in congested traffic (Inrix, 2018). Furthermore,

the heavy amounts of carbon and other emissions may have unpredictable and unprecedented

environmental repercussions. Through the last decades, these problems have seen a rise in

relevance, due to changing needs of transportation and a skyrocketing number of privately

owned vehicles.

Different approaches towards mitigating these undesirable effects of modern traffic have been

proposed, some of which require expensive and time-consuming remodelling of existing road

infrastructure or major changes in traffic legislation. Many of these measures are difficult or

even impossible to implement because of spatial, economic or environmental constraints, which

are particularly rigid in crowded city centres.

Among the proposed solutions, a more efficient utilisation of existing infrastructure through

the intelligent allocation of given resources is of particular interest, as it provides an effective,

easily implementable and cost-efficient measure, which demands little changes to the physical

road infrastructure. Current road traffic optimisation practice is a combination of hand-tuned

policies with a small degree of automatic adaption (Richter et al., 2006). Many cities experiment

with innovative mechanisms that aim to improve the efficacy of traffic control. However, most

implemented measures are restricted to small, local adaptions of phase durations in traffic lights

for a predefined sequence of traffic phases, based on historical data from past traffic counts

or measurements of current traffic volume from inductive loop sensors. Furthermore, many

systems independently optimise the schedule of single traffic lights, without considering their

interplay with the surrounding traffic network. The origin of these techniques dates back to

several decades ago, when information about the current state of the traffic system was sparse,

and the optimisation of the traffic strategy was time-consuming due to slow hard- and software.

The recent emergence of fast and reliable communication interfaces between individual

vehicles and the traffic infrastructure (especially 5G) provides an opportunity for a particularly

1

1. Introduction

data-rich representation of the current traffic state, which might be leveraged to enable highly

informed, near-optimal decisions in traffic-regulating infrastructure. However, due to the very

high-dimensional state space and the complex, non-linear nature of traffic systems, finding an

optimal solution of the given control problem for anything more than a small toy-problem quickly

becomes infeasible. Novel control paradigms are therefore needed to cope with the staggering

complexity of traffic control under the presence of detailed state-information and to effectively

mitigate traffic congestion.

In recent years, the application of Machine Learning (ML) techniques to a broad range of

problems has found traction in both academia and industry. In particular, the unreasonable ef-

fectiveness of Neural Network (NN) architectures and the backpropagation algorithm (Rumelhart

et al., 1986) has encouraged researchers to tackle ever-more-complex problems with the help of

learning algorithms. Some of the most celebrated of recent achievements stem from the field of

Reinforcement Learning (RL), which addresses complex control problems with a learning-based

approach. The combination of Reinforcement Learning and Deep Neural Networks (DNNs)—

termed Deep Reinforcement Learning (DRL)— has been successfully applied to many challenging

domains, ranging from arcade games (Mnih et al., 2015) over the ancient board-game of Go

(Silver et al., 2016) to robotic control (Popov et al., 2017).

A supposed suitability of the RL framework to solve the traffic control problem led to the

emergence of a plethora of research articles, that employ different approaches to model the

traffic scenario and apply different RL algorithms to solve it (e.g. Richter et al., 2006; Salkham

et al., 2008; Bakker et al., 2010; Prabuchandran et al., 2015; Casas, 2017; Mousavi et al., 2017).

Many of these publications report that the respective RL approach proved to outperform other,

traditional traffic control strategies by a significant margin.

Existing publications that combine RL with traffic signal control mostly assume traffic-state

information that is collected through inductive loop sensors as well as a rich communication

interface among the individual installations of the traffic infrastructure (e.g. Casas, 2017). Some

works also utilise more advanced information about the traffic-state, like video data from a

traffic camera that is installed above the intersection and gives a visual overview of the current

traffic situation (e.g. Mousavi et al., 2017). However, relatively little effort has been put into

the investigation of traffic systems that feature detailed information about individual vehicles,

obtained through a rich communication interface between individual vehicles and the local traffic

infrastructure.

1.2. Objectives
In this work, the Deep Reinforcement Learning framework will be applied to the complex problem

of traffic infrastructure control. To this end, existing DRL algorithms will be analysed, and a

suitable algorithm will be selected and adapted to the traffic control problem at hand.

To evaluate its ability in mitigating traffic congestion, the developed RL control system will

be examined in a series of scenarios. These include a single isolated intersection scenario

as well as several ensembles of connected intersections that require intricate coordination of

traffic signalling strategies. The scenarios will be implemented in an existing traffic simulation

framework, which needs to be capable of providing detailed information about the current state

of individual vehicles. In order to apply the developed RL algorithm to the traffic scenario, a

suitable hyper-parameter configuration of the algorithm has to be determined.

Of particular interest to this work, will be the benefit of available state-information of individual

2

1.3. Structure

vehicles that could, for example, be obtained through a Vehicle to Infrastructure (V2I) interface,

which lets vehicles share information with the local traffic infrastructure in real-time. Therefore,

two different observation-spaces will be developed, embodying the different degrees of available

information. The advantages of a traffic infrastructure that features rich V2I communication,

over a non-communicating infrastructure, will be assessed within the proposed traffic scenarios.

Furthermore, we will investigate the ability of the RL method to optimise multi-objective reward

functions and, therefore, to fulfil the diverse requirements that we may ask of a traffic control

system.

1.3. Structure
This thesis will be structured as follows: In chapter 2, we will give a general introduction to the

Reinforcement Learning framework, that covers the field’s basics, and then gradually introduce

the current state-of-the-art. This introduction tries to be as complete and comprehensive as

possible, while focusing on the methods and algorithms that will be used in this work. In chapter

3, the traffic control problem will be looked at in detail. We will further motivate the necessity

of an intricate control paradigm and introduce some basic terminology. We will then discuss

some traditional control approaches that are currently employed at intersections around the

world. Subsequently, we will give a brief overview of traffic simulation and introduce the software

libraries that will be made use of in this work. Finally, we review the emerging possibility of

acquiring rich state information through V2I communication. In chapter 4, we take a deeper look

at the expected advantages of using DRL for controlling traffic. Furthermore, we will analyse

which factors might make traffic control with RL in general, and the setting of V2I in particular, a

difficult problem. Subsequently, we will discuss several recent approaches towards the control

of traffic, using RL methods. Then we will explain the proposed RL algorithm and define the

full control environment, including the different observation-spaces that will be used to model

infrastructure with and without V2I communication. Finally, we briefly discuss the possibility

of deploying a RL traffic controller in a real-world traffic scenario. In chapter 5, several traffic

scenarios will be proposed and evaluated. For each scenario, we will describe the individual

setup in detail and define which behaviour we hope to witness. Subsequently, we will show and

discuss the obtained results. Finally, in chapter 6, we will summarise our findings and examine

which could be some promising further research directions.

3

2. Reinforcement Learning
In the following chapter, the ideas and principles of Reinforcement Learning (RL) that are needed

to understand this thesis will be discussed. Starting from a brief introduction and a conceptual

categorisation of RL within the Machine Learning framework, the basic principles and vocabulary

of the RL problemwill be introduced. Subsequently, the problemwill be formalised and important

solution strategies will be outlined. Finally, the RL framework will be put into the context of

function approximation with Deep Neural Networks and several recent advancements in Deep

Reinforcement Learning (DRL) will be explained. Through gradually integrating new concepts, we

hope to give a gentle but concise introduction, that largely matches the historical evolution of

the field. A review of the entire landscape of RL is beyond the scope of this work. The interested

reader is therefore referred to Sutton and Barto, 2018 for a comprehensive introduction to the

foundation of RL and to Lapan, 2018 for an applied study of latest trends in DRL.

2.1. Introduction to Reinforcement Learning
Machine Learning (ML) is a branch of the broad field of Artificial Intelligence, which is concerned

with the study of algorithms andmodels that learn to perform a task through inference from data.

Instead of explicit instructions towards solving the respective task, an ML algorithm describes

how a statistical pattern can be deduced from examples, which then may be leveraged to reach

said goal. Solution strategies are typically considered to fall into one of three different categories,

depending on the nature of the example data:

1. In Supervised Learning, the ML model is trained to map from a given input to a given
target. The target has to be provided by some external, knowledgeable supervisor. It is

therefore used to find patterns that, generalising from the example data, may predict the

targets of unseen data. A typical example is the classification of the content of images (e.g.

He et al., 2015a).

2. In Unsupervised Learning, the algorithm is only given an input, but no corresponding
target. Instead of predicting an output, it is used to model underlying statistical patterns

in the input data. A typical application would be to identify clusters of similar shopping

behaviour in customers of a retail store (e.g. Gil et al., 2009).

3. In Reinforcement Learning, the algorithm generates an output from its given input and
receives an evaluation of its performance in the form of a reward signal. The amount of

5

2. Reinforcement Learning

supervision through the reward signal can be considered to be somewhere in between

the full information of Supervised Learning and the complete lack of supervision of

Unsupervised Learning. A typical example would be to learn how to play a range of

arcade games from pixels (e.g. Mnih et al., 2015).

In contrast to the other two, that usually learn from a fixed, predefined dataset, Reinforcement

Learning is mostly considered to continuously generate new data through interaction with its

environment. Notably, this means that the statistical pattern of the training data in RL strongly

depends on the intermediate solution of the algorithm and, therefore, is non-stationary.

Intuitively it may strike us, that this regime of learning through interaction most closely

resembles our idea of how animals or humans learn. While a playing infant is not shown exactly

how to behave and which actions to take (like in Supervised Learning), it certainly receives some

feedback from the interaction with its environment, that lets it learn about causal relationships

and the outcomes of its actions. In fact, there has been found considerable overlap between

RL and research fields that are concerned with human and animal cognition, like Behavioural

Psychology or Neuroscience (Sutton and Barto, 2018). In contrast to those fields however, RL

explores a computational approach towards goal-directed problem solving and decision making

through inference from data, rather than directly theorising about biologic learning. It therefore

neglects the need to explain algorithms in terms of psychological or biochemical mechanisms

and focuses on efficiently solving the given task.

In the following, the essential concepts and problems of the Reinforcement Learning framework

are explained alongside with the standard terminology; new terminology will be printed in italic
once and will be used naturally thereafter. A mathematical formalisation of these concepts will

be presented in section 2.2.

The entity that takes actions within the environment to collect experience is called the agent. In
order to choose from the available actions, the agent leverages some representation of the state
of its environment, called the observation. The purpose of the agent is therefore to perform a
mapping from its observations to a sequence of actions to execute. This mapping is called the

agent’s policy.
The ultimate goal of RL algorithms is to take the best of all possible actions in every situation.

The quality of a policy is evaluated by some numerical reward signal, which is given after every
action that the agent takes. For example, the reward signal for an agent that trades stocks

might be the increase of its portfolio value; or an agent that plays computer games may receive

a positive reward for every game that is won, a negative reward for every lost one and zero

rewards in between. It is important to note that the performed actions may not only affect the

immediate reward but also all subsequent rewards. In extreme cases, as the aforementioned

game-playing agent, rewards might actually be so sparse that the immediate reward holds no

information and the quality of an action cannot be evaluated until many timesteps later. Rather

than maximising the immediate reward, the agent therefore strives to maximise the sum of all

future rewards. Notably, this sum does not only depend on the current state and action but also

on all subsequent ones. The learning algorithm is thus faced with the task of accrediting the

obtained rewards in order to evaluate the quality of individual actions.

An important consequence of generating data through interaction is the need to trade off

exploration and exploitation. The agent should exploit its knowledge by choosing actions that
have proven to yield high rewards. However, it might well be that it has not yet discovered the

optimal action and should therefore keep exploring by trying out other actions. This trade-off

has to be carefully tuned as both exclusively exploring as well as exploiting will result in failure.

6

2.2. Markov Decision Processes

Figure 2.1.: The agent-environment loop of a Markov Decision Process. The agent can observe

some partial information of the state of the environment. Leveraging this observation,

the agent takes actions in order to influence its environment. The environment then

returns a subsequent state and a numerical reward, which is used to evaluate the

agent’s actions.

On the one hand, actions may have to be tried several times in order to obtain a reasonable

estimate of the expected reward, especially in environments where rewards are delayed and

stochastic. On the other hand, without properly exploiting its current knowledge, the agent may

never encounter certain states and therefore fails to learn to navigate these more advanced

situations.

As we have seen, Reinforcement Learning faces some complex problems that do not usually

occur in other Machine Learning branches, which can make RL problems very hard to solve.

However, explicitly addressing these issues makes it a somewhat more complete framework, that

can be applied to a wide variety of advanced control problems in an end-to-end fashion. This

stands in contrast to many other approaches, that deal with subproblems without considering

the bigger picture. For example, an RL algorithm might address the problem of navigating an

autonomous car through urban traffic while avoiding pedestrians and other obstacles, directly

mapping sensory input to control decisions. With Supervised Learning, on the other hand, one

would address the classification of pedestrians from camera images as an isolated subproblem

and then use this knowledge in a further signal processing chain. RL thus is an ambitious effort

that just might take us a step closer towards building a truly ’intelligent’machine.

In the following section, the ideas that we have just introduced will be formalised in the

mathematical framework of the Markov Decision Process.

2.2. Markov Decision Processes
Markov Decision Processes (MDPs) are formal descriptions of the tasks that RL algorithms try to

solve. They formalise sequential decision making in problems where decisions not only influence

immediate reward but also all future states and rewards (Sutton and Barto, 2018). As described

in the preceding section, we consider an agent that senses the state s of its environment and

takes influence on this environment through actions a. In the general case, the agent is not able

to observe every detail of the state of its environment and only senses some partial information,

called an observation o. To evaluate the quality of its actions, the agent receives some numerical

reward r. Figure 2.1 shows this agent-environment interaction loop.

As most RL applications, we here consider the sequential case in that actions are taken at

discrete timesteps t = 0, 1, 2, . . . and are followed by a reward and a subsequent observation. A

7

2. Reinforcement Learning

trajectory of the agent therefore consists of a sequence of observations, actions and rewards:

o0, a0, r1, o1, a1, r2, o2, . . . , aT−1, rT , oT , (2.1)

where the horizon T is the total length of the trajectory. Note that the horizon can potentially be
infinite, resulting in a so-called continuous or infinite-horizon task (e.g. a robot that continuously
tries to navigate the real world). If the trajectories naturally fall into separate episodes of finite
but not necessarily equal length, it is called an episodic or finite-horizon task (e.g. a game of chess
that ends when one player has won).

The fundamental assumption underlying the MDP— called the Markov property— is that the

state fully identifies all knowable aspects of the environment that hold information for the future.

Importantly, this means that an agent that observes the current state of the environment cannot

improve its decisions through additionally considering past states or actions, as the current state

includes all relevant, available information. Many RL applications consider the fully observable

case in that the observation equals the state, which is seldom a reasonable assumptions. We

will here describe the more general Partially Observable Markov Decision Process (POMDP) and

include the fully observable setting as a special case in that the observation equals the state.

Even though we may later ignore the difference between observation and state, we think that,

when designing an RL application, it is crucial to bear in mind that they are not the same.

In a POMDP, the observation that the agent can sense of its environment consists of some

aspects of the state; in general the observation therefore holds less information than the state

itself. We can express the observation o ∈ O as a function of the state s ∈ S , that may be
non-deterministic:

η : S ×O → [0, 1]. (2.2)

We denote the probability distribution over observations, given a state by η(o|s). As the Markov
property does not necessarily hold for observations, an agent maymake better decisions through

taking into account all past observations and actions. We therefore consider the agents history
ht = (o0, a0, o1, a2, . . . , at−1, ot) in the decision making process and define the policy π as a

function that maps from a history h to a probability distribution over actions a ∈ A:

π : H×A → [0, 1], (2.3)

whereH is the set of possible histories. The probability distribution over actions, given a history
is denoted π(a|h). It is worth noting that the space of available actions may, in general, depend

on the state. However, here we will assume that the agent can always choose from a fixed set of

actions, irrespective of its current state, but assigns zero probability to those actions that are

unavailable. In the case of full observability, we can replace the history by the state, resulting in

the policy π(a|s).
Taking an action at in a state st takes the agent to the subsequent state st+1 and returns the

numerical reward rt+1. We formalise this by introducing the dynamics function of the MDP:

ρ : S ×A× S × R→ [0, 1], (2.4)

that defines a joined probability distribution of the subsequent state and reward, conditioned on

the previous state and action: ρ(st+1, rt+1|st, at). Note that, because of the Markov property, the
dynamics function does not depend on any previous states or actions. Figure 2.2 visualises the

described dependencies.

8

2.2. Markov Decision Processes

Figure 2.2.: Visualisation of the dependencies in a Partially Observable Markov Decision Process.

Circles denote variables; squares denote probabilistic mappings. The observation

function η maps from the environment state to the observation of the agent. Based
on the history of previous observations and actions, the agent samples a new action

from its policy π. The dynamics function ρ then determines the next state and the
obtained reward.

As we have seen in section 2.1, choosing an action at that results in the highest possible

reward rt+1 would be short-sighted, as an action can influence the subsequent state and thus all

following rewards. A more natural goal would therefore be to maximise the sum of all future

rewards:
∑T

i=t+1 ri. For episodic tasks, this value is bounded as long as individual rewards rt
are not infinite. However, for continuing tasks, where T →∞, the sum of rewards is potentially
unbounded, which makes it hard to maximise. We therefore introduce the concept of discounting
and define the discounted return as:

gt =
T∑

i=t+1

γi−t−1 · ri, (2.5)

where the discount factor γ ∈ [0, 1] determines the degree of discounting. For bounded rewards

rt ≤ rmax ∈ R and a discount factor γ < 1, the discounted return is bounded by gt ≤ rmax
1−γ . Note

that γ = 1 results in the undiscounted case.

A byproduct of maximising the discounted return is that the immediate reward will be valued

higher than rewards that are further in the future. In stochastic tasks, this might be an intuitively

reasonable assumption, as the uncertainty about the reward, we expect to obtain, grows with

temporal distance (after all, a bird in the hand is better than two in the bush). Furthermore, it

may be desirable that the agent tries to obtain high rewards as fast as possible. In the extreme

cases, a value of γ = 0 means that the agent will optimise only the reward that immediately

follows its current action, whereas γ = 1 equally values all future rewards, irrespective of the

time it takes to obtain them.

We can now formally define the discrete-time POMDP as the 6-tuple

(S,A,O, ρ, η, γ), (2.6)

with the set of states S , the set of actionsA, the set of observationsO, the dynamics function ρ,
the observation function η and the discount factor γ. Note that we do not assume all aspects of

the MDP to be known to the agent; in some cases, the agent may know quite a bit about how

rewards are generated or how the environment reacts to its actions, while in others it may know

9

2. Reinforcement Learning

close to nothing. For our purposes however, we will assume that the agent always knows the

space of possible observations and actions as well as the discount factor (in fact, one could argue

that the discount factor is internal to the agent and is not part of the MDP).

The Markov Decision Process is a flexible framework, that can model a versatile range of

real-world problems. Even though it may appear limiting to formulate a task in terms of the

MDP’s three fundamental signals— states (respectively observation in the partially observable

case), actions and rewards, in practice, these can account for a broad variety of different settings.

States can be very low-level features, like the pixel-brightness of a camera image, or high-level

information, like a long-term estimation of the development of an economy. Similarly, the action

can be low-level, like the applied voltage to an electrical actuator, or high-level, like the decision

of whether or not to learn to speak a new language. Finally, the reward signal needs to be

engineered to fully encapsulate the goals of the agent. For example, a gambling agent would

probably end up doing nothing when only trying to optimise its expected monetary outcome

(since the dealer always wins in the long run). However, a real gambler might have other goals,

like reaching the excitement and thrill of his hobby, or he may value the chance of winning higher

than the risk of losing. On the other hand, one should be careful not to over-engineer the reward

function; while it can help the agent to quickly find a good solution, when it obtains rewards for

small sub-goals, it may find a way to gain high discounted returns without solving the task that

we actually care about.

2.2.1. Value Functions
As we have discussed, our goal is to find a policy π(at|ht) that yields high discounted returns.
Unfortunately, as the dynamics function ρ in general is stochastic, the discounted return gt of

some state st can only be known at the end of the episode. It is thus impossible to choose an

action at timepoint t that reliably maximises the future realisations of the stochastic rewards.

However, knowing the statistics of the reward signal, we may optimise the discounted return

in expectation. We therefore introduce the state-value function as the expected value of the
discounted return, given the current state:

V π(s) = Eπ[Gt | St = s] = Eπ
[T∑
i=t+1

γi−t−1 ·Ri | St = s
]
, (2.7)

where uppercase symbols represent a random variable and lowercase symbols represent a

specific realisation of the respective variable. The index π of the expectation reminds us that the

actions are drawn from the policy π. The state-value function can be seen as a notion of how

good it is to be in a certain state s in terms of future rewards under the policy π. Note that, in

contrast to the discounted return gt, the state-value function V (st) can be known exactly at time

point t, even for stochastic environments.

An important property of the state-value function is the recursive relationship:

V π(st) = Eπ
[
Gt | St = st

]
= Eπ

[
Rt+1 + γGt+1 | St = st

]
= Eπ

[
Rt+1 | St = st

]
+ γEπ

[
Gt+1 | St = st

]
= Eπ

[
Rt+1 | St = st

]
+ γEst+1∼ρ|π

[
Eπ[Gt+1 | St+1 = st+1] | St = st

]
= Eπ

[
Rt+1 | St = st

]
+ γE st+1∼ρ|π

[
V π(st+1) | St = st

]
= Eπ

[
Rt+1 + γV π(St+1) | St = st

]
,

(2.8)

10

2.2. Markov Decision Processes

called the Bellman equation for V π
. The subscript st+1 ∼ ρ|π denotes, in a slight abuse of nota-

tion, that the next state st+1 is a random variable, drawn from the distribution ρ(st+1, rt+1|st, at ∼
π). Note that we make use of the Markov property when we assume that the only relation

between Gt+1 and st is through the subsequent state st+1.

In analogy to the state-value function, we define the action-value function as the expected value
of the discounted return, given the current state and the current action:

Qπ(s, a) = Eπ[Gt | St = s,At = a] = Eπ
[T∑
i=t+1

γi−t−1 ·Ri | St = s,At = a
]
, (2.9)

where the index π at the expectation denotes that, after choosing action a in timestep t, the

policy π is followed. The action-value function can thus be seen as a notion of how good it is

to take the action a in the state s under the policy π. The current action a can be of arbitrary

probability under the policy π. Because of the common notation of the action-value function by

the letterQ, the action-values are often called Q-values.

Knowing the action-value function, we can infer the state-value function through:

V π(s) = Eπ
[
Qπ(s, a ∼ π)

]
= Eπ

[
Qπ(s,A)

]
, (2.10)

where a ∼ π denotes that the current action a is a random variable that is, just as all following
actions, drawn from the policy π. Vice versa, we can infer the action-value function from the

state-value function through:

Qπ(s, a) = E
[
Rt+1 + γV π(St+1) | St = s,At = a

]
. (2.11)

Note that we dropped the subscript π from the expectation as all dependence on the current

policy is encapsulated in the state-value function of the subsequent state.

Similar to equation 2.8, we can write the Bellman equation forQπ
:

Qπ(st, at) = Eπ
[
Rt+1 + γQπ(St+1, At+1) | St = st, At = at

]
, (2.12)

that recursively defines the action-value function.

Intuitively, knowing about the effects of our actions should enable us to choose those actions

that maximise the expected discounted return. We will now explore how to select a policy that

does so. For the sake of clarity of notation, we will assume the fully observable case in our

further discussion of RL algorithms. In most cases, the formulation is easily generalised to the

partially observable case, by replacing the agent’s state with its history in the policy and the

estimated value functions.

2.2.2. Acting Optimally
As discussed, a policy π is a function that maps from a state s (respectively the history h of

observations and actions in the partially observable setting) to a probability distribution over

the available actions a. For any MDP, there exists an infinite number of possible policies π ∈ Π,

assigning arbitrary probabilities to all actions in all possible states. A specific policy can be seen

as better than another one, if it tends to yield higher discounted returns. In particular, if we find

11

2. Reinforcement Learning

a policy π′ that assigns equal action probabilities as another policy π in all states except s′

π′(s) = π(s), ∀s ∈ S \ s′ (2.13)

but yields higher returns in the state s′:

V π′
(s′) = Qπ(s′, a ∼ π′) > V π(s′), (2.14)

we say that the policy π′ improves over π.

For any state of the MDP exists at least one optimal action, that yields the highest possi-
ble expected discounted return. In terms of the action-value function, the optimal action is

arg maxaQ
π(s, a). The policy that always chooses this action, and therefore maximises the

state-value function, is called the optimal policy:

π∗ = arg max
π

V π(s), ∀s ∈ S. (2.15)

In case there exists a state for that more than one action yields the highest possible expected

discounted return, there is an infinite number of optimal policies, that assign arbitrary proba-

bilities to the set of optimal actions. We will denote the state-value function and action-value

function under the optimal policy by V ∗ andQ∗, respectively.

The optimal policy can also be defined in terms of the action-value function, as a mapping

which always chooses the action that greedily maximises the action-value function:

π∗ : arg max
a

Q∗(s, a), ∀s ∈ S. (2.16)

The term greedy refers to the problem solving heuristic of choosing a locally optimal action,

while not considering its long term implications. The beauty of optimal value functions is that

choosing locally optimal actions is also the globally optimal solution, as the value function takes

into account all future rewards.

Using the optimal policy, we can rewrite equation 2.8 in the Bellman optimality equation for V ∗:

V ∗(st) = max
at

E
[
Rt+1 + γV ∗(St+1) | St = st, At = at

]
(2.17)

and 2.12 in the Bellman optimality equation forQ∗:

Q∗(st, at) = E
[
Rt+1 + γmax

at+1

Q∗(St+1, at+1) | St = st, At = at
]
. (2.18)

The result that we can maximise the expected discounted return through greedily choosing

the action with the highest action-value is very important, as it tells us that acting optimally is

relatively simple when we exactly know the optimal value function. However, in most cases,

both value functions are unknown, which requires RL algorithms to estimate them and act

optimally with respect to the estimated function. In the following sections, we will introduce

several strategies to solve an MDP problem when the value functions are unknown.

12

2.3. Tabular Learning

Figure 2.3.: Minimal grid-world example of a tabular environment. The agent starts in state s0

and can move from one square to the next along the chosen direction. Upon arriving

on a new square, the agent gets a reward of −1; the only exeption is the terminal
state s3, where the agent receives a reward of 3 and the episode ends. The tables on
the right show the optimal value functions for a discount factor γ = 1 as well as the
optimal policy.

2.3. Tabular Learning
Thus far we have made no assumptions about the state- and action-spaces S andA. The nature
of these two spaces, however, has a strong influence on the available solution strategies. In

particular, we may differentiate between the cases of finite and infinite sets S andA. In the case
of a finite state and action spaces, there exists a fixed number of possible states and available

actions:

S = [s1, s2, . . . , sN], N ∈ N, (2.19)

A = [a1, a2, . . . , aM], M ∈ N. (2.20)

We will call this the case of a discrete state- respectively action-space.

For infinite state- and action-spaces, we will focus on the case of states and actions being

real-valued vectors— called the continuous case:

S ⊆ RN , N ∈ N, (2.21)

A ⊆ RM , M ∈ N, (2.22)

whereX ⊆ Y denotes thatX is equal to, or is a convex subset of Y .
Of course, we are not limited to state- and action-spaces both being either discrete or

continuous. We may encounter a continuous state-space, paired with a discrete action space or

vice versa or even spaces that consist of some discrete and some continuous dimensions. In this

section we will consider the case of both spaces being discrete. We will discuss the other cases

in the following sections 2.5, 2.6 and 2.7.

If both the state- as well as the action-space are discrete, we can write the policy as a table,

where the rows represent individual states, and the columns represent the available actions.

Every entry then assigns a probability of choosing the respective action, when being in the

respective state. Importantly, the tabular case allows us to represent all these functions exactly

(at least up to the point of machine precision), while using a finite amount of memory.

Figure 2.3 shows an example of a tabular environment. In this kind of environment, typically

called grid-world, the agent has to navigate through a two-dimensional field of discrete states,
much like a checkers board. In the example, the agent starts out in the initial state s0 and can

decide in every timestep t, in which direction to go (left, up, right or down). The received reward

13

2. Reinforcement Learning

depends only on the subsequent state st+1, and the episode ends when the agent reaches the

terminal state s3. The tables on the right show the optimal state-value function and action-value
function for a discount factor γ = 1 as well as the optimal policy. Because the episode ends

after reaching the terminal state, no further rewards can be collected and no further action can

be taken, which is why the tables do not include s3. Of course, it would not be necessary to

compute both the state-value function and the action-value function, as the MDP can be solved

when knowing either one. Generally, the action-value function enables easier inference of the

optimal policy, while the state-value function has the advantage of requiring less memory. Note

that the depicted policy is just one of the optimal ones, as assigning arbitrary probabilities to

actions a2 and a3 when being in state s0 does not change the expected discounted return. We

will later come back to this example to explain several concepts.

2.3.1. Dynamic Programming
Coming up with the correct value functions and the optimal policy in the example from figure

2.3 is trivial due to the very simple environment dynamics. Importantly, knowing the dynamics

function ρ allowed us to figure out the value functions without actual interaction with the

environment. Through the knowledge of the environment dynamics and the Bellman equation,

we can formulate the problem as a system of linear equations, which can be solved by any

suitable solver. In particular, methods of Dynamic Programming have been applied to solve
MDPs, as they scale significantly better to large state spaces than other methods (Sutton and

Barto, 2018).

The Bellman equation defines the value function of a state in terms of itself in a subsequent

state, which is also unknown. This apparent catch-22 can be solved by the Policy Evaluation
algorithm. Initially, this algorithm randomly guesses the tabular value function and then

repeatedly applies:

V̂
π

k+1(s) = Eπ
[
Rt+1 + γV̂

π

k(St+1) | St = s
]

=
∑
a

π(a|s)
∑
s′, r

ρ(s′, r|s, a)[r + V̂
π

k(s′)], ∀s ∈ S, (2.23)

where V̂ k denotes the estimation of the state-value function at the k-th iteration of the Policy

Evaluation algorithm. This equation is executed until the state-value function converges, meaning

that the computed values no longer change and therefore V̂
π

k = V π
. For the tabular case, the

Policy Evaluation algorithm provably converges to the true state-value function (Bellman, 1958).

This notion of iterative, recursive approximation is referred to as bootstrapping (originating from
the notion of pulling oneself up by the bootstraps). In the following, two popular methods for

solving MDPs with Dynamic Programming are introduced.

Policy Iteration
The Policy Iteration algorithm consists of two steps that are executed alternately. The first step is
the Policy Evaluation algorithm (equation 2.23), that iteratively approximates state-value function

for the current policy. As we usually cannot wait until the algorithm has fully converged, it is

mostly run until the change in the approximated state-value function is sufficiently small and

thus V̂
π

k ≈ V π
.

In the second step, called Policy Improvement, the current policy is improved towards choosing

14

2.3. Tabular Learning

Figure 2.4.: The Policy Iteration algorithm alternately executes two steps. In the first step, called

Policy Evaluation, the value function is approximated. In the second step, called

Policy Improvement, the policy is optimised as to yield the highest expected return.

better actions – according to the estimated state-value function:

πl+1(a|s) = arg max
a

E
[
Rt+1 + γV̂

πl
(St+1) | St = s,At = a

]
= arg max

a

∑
s′, r

ρ(s′, r|s, a)[r + V̂
πl

(s′)], ∀s ∈ S.
(2.24)

The tabular nature of the dynamics function allows us here to replace the expectation by a

summation over the finite number of possible subsequent state-reward pairings. The policy

and state-value function usually are randomly initialised. The Policy Iteration algorithm provably

converges to the optimal policy π∗ (Bellman, 1958).

Figure 2.4 shows the concept of the Policy Iteration algorithm. This approach of alternating

evaluation of the value function and improvement of the policy is common to most RL algorithms

that approximate value functions.

Value Iteration
The Value Iteration algorithm, in contrast to Policy Iteration, does not apply equation 2.23 until
convergence. Instead, it executes only only a single step of Policy Evaluation before the Policy

Improvement step (equation 2.24). An equivalent interpretation is that Value Iteration iteratively

approximates the optimal state-value function through applying the Bellman optimality equation

(equation 2.17) to the current estimate:

V̂
∗
k+1(s) = max

a
E
[
Rt+1 + γV̂

∗
k(St+1) | St = s,At = a

]
= max

a

∑
s′, r

ρ(s′, r|s, a)[r + V̂ k(s
′)], ∀s ∈ S, (2.25)

until the estimation has converged. After convergence, the optimal policy can be followed by

greedily choosing the action that yields the highest expected discounted return (equation 2.24).

Value Iteration has the same convergence guarantees as Policy Iteration but has been observed

to converge much faster (Sutton and Barto, 2018).

The Policy Iteration and Value Iteration algorithms thus differ in the number of steps of Policy

Evaluation that they execute before improving the policy. While Policy Iteration takes as many

steps as needed for the value function to converge, the Value Iteration algorithm only takes a

single step. The Generalised Policy Iteration (GPI) algorithm closes the gap between the two. In

GPI, any number of Policy Evaluation steps is allowed before Policy Improvement. In particular,

we may evaluate the state-value function of some states more often than of others. This is very

15

2. Reinforcement Learning

useful when certain states are barely ever visited under the current policy.

2.3.2. Monte Carlo Methods
So far we have assumed to have an explicit expression for the dynamics function. In most

real-world cases, however, we cannot obtain an exact model of the environment dynamics.

Even if we define the model ourselves, like in a complex simulation, it is often still infeasible to

obtain the explicit form of the dynamics function that we would need in order to apply Dynamic

Programming algorithms. We therefore need methods to approximate these algorithms by

leveraging experience that is obtained through interaction with the environment. More precisely,

the expected value of the state-value function (equation 2.7) has to be approximated from

sampled data.

A sampled realisation of a random variable is an unbiased estimator of its expected value. We

could therefore replace the expected value over the subsequent state and reward by the actual

values, encountered through interaction with the environment. Unfortunately, the stochastic

nature of the dynamics function gives rise to a high variance in this estimation and, therefore,

results in distorted value functions and, ultimately, suboptimal policies. The obvious solution

to high variance estimates is averaging over multiple sampled trajectories, as the variance of

the estimation of the expected value falls with 1/
√
N , whereN is the number of samples. We

may therefore approximate the state-value function of a state s as the average over the sampled

discounted return from individual episodes, starting from the respective state:

V π(s) = Eπ
[T∑
i=t+1

γi−t−1 ·Ri | St = s
]
≈ 1

n

N∑
n=0

Tn∑
i=tn+1

γi−tn−1 · ri, n,

with stn, n = s ∀n ∈ [1, N],

(2.26)

where the subscript tn, n denotes the tn-th timestep of the n-th episode, and T n denotes the

length of the n-th episode. We here implicitly assume that the policy π is followed at all times.

Note that a single episode can be used to estimate the value function for many states, as we can

construct a trajectory from every state that is encountered during the episode to the terminal

state. This class of algorithms was termed Monte Carlo Methods in Sutton and Barto, 2018, even
though this terminology slightly clashes with the usual definition of Monte Carlo Methods as a

general method of numerical problem solving through repeated random experiments.

According to the law of large numbers, the estimation converges to the true state-value

function V π
in the limit N → ∞ as long as the policy allows all states to be visited infinitely

often. Of course, sampling an infinite number of trajectories is impractical. In most cases,

however, it is sufficient to estimate the value function until it only changes marginally under

the addition of new data. After approximate convergence of the state-value function, we can

take a Policy Improvement step. This approach may be seen as the data-driven pendant to the

Policy Iteration algorithm from the preceding section (see figure 2.4). Instead of estimating V π

until convergence before improving the policy, we can also use an algorithm similar to Value

Iteration, that alternately collects a new episode of data to improve its value estimate according

to equation 2.26 and then optimises its policy after every episode. Note however that this

alternative thus far lacks a complete formal proof of convergence (Tsitsiklis, 2003).

In practice, RL methods do not keep a full history of episodes in order to apply equation 2.26.

16

2.3. Tabular Learning

Instead, value functions are usually updated incrementally by:

V̂
π

k+1(s) = V̂
π

k + α · [gt, k − V̂
π

k(s)], with st, k = s, (2.27)

where α is the learning rate, that defines the speed of the adaption. Of course, this is not an
exact equivalent to equation 2.26, as it weighs the trajectories so that more recently encountered

discounted returns contribute stronger to the current value estimate. While this can prohibit full

convergence, it adds the advantages of being able to track value functions for non-stationary

statistics and to require significantly less memory.

2.3.3. Temporal Difference Learning
A major drawback of estimating value functions with Monte Carlo Methods (equation 2.26) is that

we have to wait until the very end of an episode to update our estimation of the value function.

This also implies that the interaction of the MDP has to fall into separate episodes, or else the

agent can never learn anything. We can solve this problem by reintroducing the concept of

bootstrapping from the Bellman equations (equations 2.8 and 2.12) and replacing the expected

values with unbiased estimators. Inserting the bootstrapped estimate of the state-value function

for a given state into equation 2.27 yields:

V̂
π

k+1(s) = V̂
π

k + α · [rt + γV̂
π

k(st+1)− V̂
π

k(s)], with st = s, (2.28)

where we have dropped the index of the episode for convenience. The expression

rt + γV̂
π

k(st+1)− V̂
π

k(st) =: δt (2.29)

is called the TD-error, as it represents the error between the old estimate of the state-value

function and the new, improved estimate, which incorporates the information of the experienced

transition.

Applying equation 2.28 to every new, sampled transition st, rt+1, st+1 yields the TD(0) algorithm
which is the "vanilla" version of Temporal Difference Learning (TDL). For a fixed policy, the TD(0)
algorithm has been proved to converge to the true state-value function, if the learning rate is

sufficiently small and the policy allows reaching every state (Sutton, 1988).

In TDL, new data in the form of a reward propagates stepwise through the state-value function

of different states as we employ equation 2.28. Importantly, this means that, in contrast to the

Monte Carlo equivalent, a single pass over all encountered states may not fully incorporate the

knowledge of the new data into the state-value function since the values that we bootstrap

from may change when updating other state-values. To illustrate this, figure 2.5 shows how

the example of figure 2.3 is learned by the Monte Carlo algorithm and the TD(0) algorithm. We

initially guess all state values to be zero and choose the learning rate to be 1. Starting in the initial

state s0, we sample the trajectory: s0, a2, s1, a3, s3 with the reward sequence −1, 3. In Monte

Carlo estimation (equation 2.27), we would update the state-value function of all encountered

states by the discounted return that followed the respective state, obtaining a new estimate of

V̂
π
(s0) = 2 and V̂

π
(s1) = 3. The value function can be learned as soon as the entire trajectory is

sampled. Note that repeatedly applying equation 2.27 does not change this estimate. In TDL, we

apply equation 2.28 to all encountered states after every step in the environment. After the first

step, going from s0 to s1, we obtain a new estimate of V̂
π
(s0) = −1 (the bootstrapped value of

17

2. Reinforcement Learning

Figure 2.5.: Estimation of the state-value function in the grid-world MDP of figure 2.3 with Monte

Carlo Methods respectively the TD(0) algorithm. In the initial timestep, there is no

reward; and in the terminal state, no further action is executed. In Monte Carlo

Methods, the update of the value function is executed at the end of the episode; in

TDL, the values are updated after every timestep.

s0 is 0, the obtained reward is -1). After the second step, we update V̂
π
(s1) = 3 but leave the

estimation of s0 = −1. Note that subsequently applying equation 2.28 to the transition from s0

to s1 for a second time would lead us to the same estimate as the Monte Carlo version because

we would incorporate the updated value of s1 into our estimate of s0. To conclude, Monte Carlo

Methods thus yield a better estimate of the true discounted return, whereas Temporal Difference

Learning (TDL) methods let us update the value function before ending the episode.

The preceding example illustrates that applying equation 2.28 every time we sample a new

transition may not be enough. In particular, for a transition from state s to s′, we may improve

our estimate of the value of s′ in subsequent timesteps and can thus reapply 2.28 to obtain a

better estimate of the value of s (bootstrapping from s′). Oftentimes it makes therefore sense to

save former transitions in a so-called replay buffer and revisit them later on (the idea of a replay
buffer was introduced in Lin, 1992).

As we have seen, the difference of TD(0) and Monte Carlo Methods is the number of future

rewards that are used to estimate the state-value function. The two methods can be generalised

in the framework of n-step bootstrapping, where the estimate consists of n future rewards and a
bootstrapped value of the state in timestep t+n. The TD-error in the case of n-step bootstrapping

thus reads:

δt =
n∑
i=1

γi−1rt+i + γnV̂
π
(st+n)− V̂

π
(st). (2.30)

Using n reward-steps for the update provides a trade-off between the good estimator of the

discounted return of Monte Carlo Methods and the immediate feedback of TD(0). For a moderate

n (usually between two and five) the n-step version of TDL has been observed to converge

significantly faster than Monte Carlo Methods or TD(0).

In order to improve at a given task, a learning algorithm needs to leverage its knowledge of the

value function towards choosing better actions. Unfortunately, if the dynamics function is not

explicitly known, we cannot use equation 2.24 for the Policy Improvement step. It is therefore

more common in RL to estimate the action-value function instead of the state-value function.

Using the action-value function, we can easily execute a Policy Improvement step without any

knowledge about the dynamics function by taking the action with the highest value for a given

state:

πl+1(a|s) = arg max
a

Q̂
πl

(s, a), ∀s ∈ S. (2.31)

Thus far, we have concentrated on the state-value function because it provides a more

18

2.3. Tabular Learning

straightforward introduction to the theory. However, as most modern RL algorithms work with

action-values, we will now shift our focus more towards approximating action-value functions.

In the following, several popular TDL algorithms for estimating the action-value function are

introduced.

SARSA: On-Policy Temporal Difference Learning

When replacing the state-value function V in equation 2.28 with the action-value functionQ, the

TD-error results to δt = rt + γQ̂
π

k(st+1, a
′)− Q̂

π

k(st, at). Note that, when we want to update the

action-value function of the state-action pair (st, at), the action a
′
is not yet defined. We thus

need to select an action-value Q̂(st+1, a
′) to bootstrap from, by selecting an action a′.

A straightforward approach is to sample the action of the subsequent timestep at+1 from

the policy before updating the value function. In every timestep, the agent, that currently is in

state st, takes a step in the environment, where the action at is sampled from its current policy

π(at|st). The environment returns the reward rt+1 and the subsequent state st+1. The agent

can now sample the subsequent action at+1 from π(at+1|st+1). We thus bootstrap from the

action-value of the action that is actually executed by the agent. The update equation then reads:

Q̂
π

k+1(s, a) = Q̂
π

k(s, a) + α · [rt + γQ̂
π

k(st+1, at+1)− Q̂
π

k(s, a)],

with st = s, at = a.
(2.32)

The quintuple (st, at, rt+1, st+1, at+1), that is needed for every learning step, gives rise to the

name SARSA. Just as all previous algorithms, the SARSA algorithm alternates between Policy
Evaluation and Policy Improvement. In the Policy Evaluation step, the experienced transition is

inserted into equation 2.32 to lead to a better estimate of the action-value function. Then, the

current policy is optimised through equation 2.31. Note that, since the only changed value is the

one of state st, the improvement step is also carried out only in this state (compare figure 2.4).

An important observation is that the SARSA quintuple depends on the current policy as the

subsequent action at+1 is selected through it. All other elements are defined by the arguments

of the function (at and st) and by the dynamics function (rt+1 and st+1). This dependence of the

experience on the current policy constitutes a so-called on-policy algorithm. On-policy algorithms
allow us to learn the value function of the policy that the agent currently follows, which intuitively

may be the obvious choice. However, as we have discussed in section 2.1, in RL we are faced

with the problem of carefully balancing exploring and exploiting actions. It may therefore be

beneficial to be able to learn the optimal action-value function, while following a policy that

takes some suboptimal actions in order to further explore its environment. To achieve this, the

dependence of the update equation (eq. 2.32) on the current policy needs to be eliminated.

Q-Learning: Off-Policy Temporal Difference Learning

The Q-Learning algorithm lets us learn the optimal action-value function by assuming that

subsequent actions are chosen optimally:

Q̂
π

k+1(s, a) = Q̂
π

k(s, a) + α · [rt + γmax
a′

Q̂
π

k(st+1, a
′)− Q̂

π

k(s, a)],

with st = s, at = a.
(2.33)

19

2. Reinforcement Learning

The update equation in Q-Learning is defined by the quadruple (st, at, rt+1, st+1), which has no

dependency on the policy that was followed at timepoint t. This allows us to follow a non-optimal

policy while learning about the optimal action-value function. Q-Learning therefore is a so-called

off-policy algorithm.
The most common strategy in Q-Learning is to follow a so-called epsilon-greedy policy. This

policy takes the greedy action, which maximises the current estimate of the action-value function,

most of the time, but with a probability of ε ∈ [0, 1] it selects one of the available actions at

random. We thus exploit our current knowledge of the MDP by taking optimal actions most

of the time so that we may reach states that are hard to encounter when following a purely

exploring policy. Additionally, we keep on exploring new actions that may yield higher discounted

return than our estimate of the action-value function suggests. As discussed earlier, it can often

be beneficial to keep the sampled transitions in a replay buffer and reapply the Policy Evaluation

step later on. Another important advantage of off-policy algorithms is the option of reusing data

that was collected under a former policy. This is in contrast to on-policy algorithms, where we

may only learn from transitions that were experienced under the current policy. We will further

explore this advantage when introducing Q-Learning with function approximation in section 2.5.

Double Q-Learning
Assuming the agent to take the action that maximises the action-value function in the next

step comes with a problem: Since the estimate of the values of the subsequent state are noisy,

taking the maximal value introduces a bias, so that the Q-Learning update tends to overestimate

the true discounted return (Thrun and Schwartz, 1993). As an illustration, imagine that the

true action-values of all actions in the subsequent state are 0 and our current estimate of the

action-values is drawn from a Gaussian with zero-mean but non-zero variance. In this scenario,

the maximum operation of the Q-Learning algorithm would tend to overestimate the values.

The Double Q-Learning algorithm overcomes this overestimation by decoupling the maximum-
operation from the value-estimate. Instead of estimating a single action-value function, it

separately learns two action-value functions Q̂ and Q̃ (with different initialisation), and then uses

the value of one of the functions but maximises over the other. The two value functions are

learned through:

Q̂
π

k+1(s, a) = Q̂
π

k + α · [rt + γQ̂
π

k

(
st+1, arg max

a′
Q̃
π

k(st+1, a
′)
)
− Q̂

π

k(s, a)],

Q̃
π

k+1(s, a) = Q̃
π

k + α · [rt + γQ̃
π

k

(
st+1, arg max

a′
Q̂
π

k(st+1, a
′)
)
− Q̃

π

k(s, a)],

with st = s, at = a.

(2.34)

Note that this algorithm doubles both the complexity of the update as well as the memory

footprint of regular Q-Learning.

Summary of Tabular Methods
Figure 2.6 shows a unified framework of the discussed methods. For discrete state and action

spaces, we can describe all possible trajectories of states and actions as a decision tree where

nodes are states, edges are actions and leafs are the terminal states. The naive method of

traversing the entire tree of possible states and actions, referred to as exhaustive search, was not
discussed, as it is usually infeasible. Dynamic programming simplifies the exhaustive search by

20

2.4. Function Approximation

Figure 2.6.: Summary of tabular learning algorithms. Shows the discussed learning methods in

a unified framework. White circles show states; black circles, actions and squares,

terminal states. Adopted from Sutton and Barto, 2018

considering only one decision-step at a time. It averages over possible actions and subsequent

states for the next step and thus considers the entire breadth of possibilities for a single decision

in the tree. Monte Carlo methods adopt the opposite strategy and consider just a single path of

the entire depth of the tree. Finally, Temporal Difference Learning considers the smallest possible

unit of only one transition. Note that it is possible to construct an intermediate algorithm that

may consider part of the width and depth of the tree but not the entire tree.

This concludes our treatment of the tabular case. The described principles and algorithms are

the foundation of all modern RL methods and provide a crucial insight into the workings of more

involved algorithms. We have not been able to truly give credit to the breadth or depth of the

field and would strongly recommend reading the part on Tabular Learning in Sutton and Barto,

2018 for a deeper understanding of all areas of RL.

2.4. Function Approximation
Tabular learning provides a powerful framework for solving MDPs with a finite number of discrete

states and actions. However, with large state and action spaces, the value functions and policies

are very memory consuming and quickly become unfeasible to store on today’s hardware. In the

continuous case (e.g. if the state is the position and speed of a car) arises the need to divide the

state and action spaces into a finite set of values. This discretisation is weird and limiting to the

expressiveness of states and distinctiveness of actions.

Moreover, in many cases the representation of the state- and action-values through individual

values may be counterproductive. In particular, if a tabular agent encounters a previously unseen

state it has no notion on how to behave. However, having seen similar states, an agent should

leverage its knowledge on how to navigate the similar situation towards deciding on the current

action to take. This feature of interpolating the values of unseen states through the knowledge

of similar states is called generalisation.

The identification of similar states requires the state space to admit some metric in order to

21

2. Reinforcement Learning

asses the similarity of two states. To do this we will consider individual states to be points in

multidimensional continuous state spaces. Instead of a discrete value that uniquely identifies a

state, we will thus denote states as real-valued vectors:

s = (s1, s2, s3, . . . sN). (2.35)

Note that we have reassigned the superscripts to denote the dimensions of the state space,

instead of being an unique identifier of discrete states. For identifying similar states, we then

require the state space to admit some spatial coherence. In particular, we may assume the value

function to be a continuously differentiable manifold on the features of the state vector so that

a marginal change in the state may only result in a small change in the value function. In the

tabular example in figure 2.3, we could, for instance, use a state representation of one vertical

and one horizontal coordinate. The unique states would then translate to the coordinates:

s0 = (0, 0), s1 = (0, 1), s2 = (1, 0), s3 = (1, 1).

The use of parametric functions offers an alternative to saving individual values for all possible

states and actions. For example, one might use a linear combination of the features of the state

vector to represent the optimal state-value function of figure 2.3:

Q̂
∗
(s) = θ0 + θ1 · x1 + θ2 · x2, with s = (x1, x2), (2.36)

where the coefficients θ0, θ1 and θ2 are the parameters of the function that an ML algorithm

tries to find. Notice that we here denote the features of the state space by x1 and x2 instead of

s1 and s2, in order to not confuse them with the discrete identifiers for the unique states of the

tabular example.

For parameters θ0 = 1, θ1 = 1, θ2 = 1, we can verify that the state-value function is

represented exactly (except for the terminal state, which, per definition, has a value of 0).

This should come as no surprise, as we replace the three state-values by a function with three

parameters and, therefore, may represent arbitrary values. Our goal, of course, is to use functions

with fewer parameters than the number of distinct states of the MDP, so that we may express

the value function of an arbitrarily large state space, using a limited amount of memory. This

means, however, that in general we may no longer exactly represent the corresponding, correct

tabular values of all states. Furthermore, it may not be possible to adjust our value-estimate of

one state without changing the ones of other states. Consequently, it may also be impossible to

find the true optimal policy.

Function approximation in the Machine Learning framework is concerned with the study of

how to select one particular function among a well-defined class of candidates, that most closely

matches a number of data points. Oftentimes, this class is defined by a summation over different

terms that are weighted by a set of parameters (in equation 2.36, for example, we sum over

weighted linear terms). These parameters can be learned so that the goal of the algorithm is to

find the set of parameters that yields the function that best describes the available data. The

quality of a candidate is defined by a so-called objective-function, that assigns a numerical value
to the pair of a function and a set of data points. For example, in the linear case, we often try

to minimise the mean of squared distances between the data and the approximating function

— called the Mean Squared Error (MSE). Figure 2.7 shows an example of function approximation
with a linear model. The left image shows a group of data points and a straight line that is the

best fit to the data in an MSE sense (the line has a slope of 0.49 and an offset of 0.58). The right

image shows a contour plot of the MSE for different offsets and slopes and marks the spot of

22

2.4. Function Approximation

0.0 0.2 0.4 0.6 0.8 1.0
slope

0.0

0.2

0.4

0.6

0.8

1.0

of
fs

et

[0.48 0.6]
0.106

0.152
0.231

0.231
0.340

0.340

0.481

0.481

0.653

Mean Squared Error

0.00 0.25 0.50 0.75 1.00
x

0.6

0.7

0.8

0.9

1.0

1.1

1.2

y

Figure 2.7.: Example of linear function approximation. Left: The dots depict several data points,

which could be individual measurements of some physical entity. The line is the

linear function that best describes the data in a MSE sense. Right: A contour plot of

the MSE for different offsets and slopes of the linear function. The dot marks the

best set of parameters, which correspond to the line in the left plot.

the lowest MSE.

The field of Machine Learning and function approximation is broad and will not be fully covered

in this work. For a deep dive into most relevant algorithms, we strongly recommend Hastie et al.,

2004 or Bishop, 2006 for a comprehensive Bayesian interpretation. In this section we will give a

brief introduction to function approximation with Neural Networks (NNs) as they are the current

weapon of choice in Machine Learning in general, and Reinforcement Learning in particular, and

will also be made use of extensively in this work. For a thorough study of NNs, the interested

reader is referred to Goodfellow et al., 2016.

2.4.1. Neural Network Architecture
Previously, we have introduced the idea of function approximation as a means to parameterise

the state-value function. In this section, we will discuss Neural Networks (NNs) without explicitly

assuming RL as an application domain. Through this, we hope to paint NNs as the broad and

versatile framework that they are.

The Perceptron

The fundamental building block of Neural Networks is the Perceptron. Conceptually, it is loosely
based on a simple model of biological neurons, which accounts for the word ”Neural” in Neural

Network. A Perceptron performs a nonlinear mapping from a vector of inputs to a numerical

output. Similar to the linear model (equation 2.36), it computes the sum over the weighted

entries of its input vector and some offset. The result of the summation is often called the

activation. Subsequently, it applies some nonlinear operation to the outcome of the summation:

ŷ = σ
(
θ0 +

N∑
i=1

θi xi
)

= σ(θ · x), where

w = (θ0, θ1, . . . , θN), x = (1, x1, x2, . . . , xN)T .

(2.37)

23

2. Reinforcement Learning

Figure 2.8.: Left: Schematic of a Perceptron. It computes a weighted sum of its inputs and applies

some nonlinear activation function to the result. Right: Example of the operation of

a Perceptron with a sign function as nonlinearity. A set of data points that lie in a

two-dimensional space, each belonging to one of two classes (blue or orange). The

Perceptron establishes a linear boundary between the two classes, which, in this

simple example, can correctly classify all data points.

Here, x is the input vector, ŷ is the computed output, θ is the parameter vector and σ is some

nonlinear function, called the activation function. The first element of the parameter vector is
called the bias, as it is added to the sum irrespective of the input vector. The remaining elements
are referred to as weights, as they weigh the influence that individual inputs have on the output.
Figure 2.8 shows a schematic of a Perceptron (left) alongside with an example of the operation

of a Perceptron (right). The Perceptron in the example on the right uses a sign function as

nonlinearity, which could be regarded as being loosely based on the function of a biological

neuron, that is activated when the intensity of the sum of the ingoing signals surpasses some

threshold (Dayan and Abbott, 2005). Even though, in practice, the sign function is rarely ever used

as a nonlinearity, this example gives a good intuition of the type of mappings that a Perceptron

can perform. In the example, a set of data points is plotted in a two-dimensional space. Each

of the data points belongs to one of two classes (blue or orange). The Perceptron maps every

input (the coordinates of the data point) to a value of -1 or +1 (or 0, exactly on the boundary),

which may be interpreted as the two different classes. The Perceptron divides the space by a

linear boundary, where the weight-vector (without the bias) can be interpreted as the normal

vector of the dividing line. In this simple example, a linear decision boundary between the two

classes can correctly classify all given data points. Note that for different activation functions, the

interpretation of the output may be different.

Deep Neural Networks
In most cases, a linear regression model (figure 2.7) or a linear decision boundary (figure 2.8)

is not enough to approximate a complex function like the state-value function of a difficult RL

problem. Multilayer Perceptrons (MLPs), also called Neural Networks (NNs), take a compositional

approach and approximate complex functions through the combination of multiple Perceptrons.

More precisely, in NNs, the input vector x is processed byN individual Perceptrons, where each

has its own weights and bias. The N outputs of the Perceptrons can then be processed by a

subsequent layer of Perceptrons and so on. The final layer of Perceptrons outputs the vector

ŷ. The intermediate layers are called hidden layers, and the intermediate output vectors are

24

2.4. Function Approximation

Figure 2.9.: A Multilayer Perceptron that consists of an input layer withN inputs, L hidden layers,
withKl, l = 1, . . . , L units respectively, and an output layer withM outputs. Each

circle, except for the inputs, here represents the weighted sum and the nonlinear

mapping operation of a single Perceptron.

denoted z. An NN is considered to be ”Deep” if it uses more than one hidden layer.

Figure 2.9 shows a schematic of an NN. Note that the signal in the depicted NN strictly flows

from the input layer to the output layer. Notably, there exist other types of NN architectures

that, for instance, allow for the signal to be convolved (LeCun et al., 1999), skip hidden layers

(Szegedy et al., 2014) or save the signals from one timestep and use the saved state for the next

(Hochreiter and Schmidhuber, 1997).

Here we will focus on the basic version, shown in figure 2.9. Every layer thus transforms its

ingoing signal into an outgoing signal, which may have a different number of dimensions:

zi(zi−1) = σi
(
θi · zi−1

)
, i = 1, . . . , L+ 1, with

θi =


θi,1,0 θi,1,1 . . . θi,1,Ki
θi,2,0 θi,2,1 . . . θi,2,Ki
.
.
.

.

.

.
. . .

.

.

.

θi,Ki+1,0 θi,Ki+1,1 . . . θi,Ki+1,Ki


zi = (1, zi,1, zi,2, . . . , zi,Ki)

T , and z0 = x, zL+1 = ŷ.

(2.38)

Here, the index i, j, k denotes the k-th input of the j-th Perceptron in the i-th layer and the

function σi applies the nonlinear mapping to its input vector. θi thus denotes the matrix of

parameters of the i-th layer. The entire set of parameters of the model will be denoted θ, without

making any explicit assumptions about its structure. Note that the architecture of an NN again

borrows from biologic neurons; the weighted connections could be interpreted as synapses, that

connect the axons of the neurons in the previous layer to the dendrites of the neurons in the

subsequent one, and the summation and activation function as the soma of the neurons (Dayan

and Abbott, 2005).

NNs turn out to be able to represent a versatile range of functions and are therefore well-suited

to be used as a general function approximator for learning systems. Whereas many other

function approximators require a cumbersome manual design of the features of the input space,

the complexity and versatility of the mappings that an NN can perform, enables it to deal with

raw and unstructured input data. In particular, NNs have been found to find structure in raw

25

2. Reinforcement Learning

4 3 2 1 0 1 2 3 4
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y
activation function
relu
sigmoid
tanh
sign
elu
saturating
True
False

Figure 2.10.: Some common forms of the nonlinear activation function of NNs. An important

distinction is the one between saturating and non-saturating activation functions.

sensory data, like the pixels of an image (He et al., 2015a) or the waveform of an audio signal

(Oord et al., 2016).

Activation Functions

The activation function σ may generally be any nonlinear function. In most cases however, one

of the functions depicted in figure 2.10 is used (sometimes with slight adaptions).

An important distinction is the one between saturating (e.g. sigmoid and tanh) and non-

saturating (e.g. relu and elu) activation functions. Saturating activation functions converge to

a fixed value for both increasing as well as decreasing inputs. They were the most common

choice when Perceptrons were first introduced. However, further research revealed that the

vanishing gradient of these functions can impair learning, as gradient-based learning methods

may converge very slowly. This is especially true for NNs with many hidden layers. Nowadays,

the general suggestion is, therefore, to use saturating activation functions only in cases where a

finite output interval is explicitly required (e.g. if the output of the Perceptron is interpreted as a

probability, the chosen activation function is usually a sigmoid as it produces values in the [0,1]

interval). In this work, we will make use of the tanh and the elu function that are defined as:

σelu(x) =

x if x > 0,

α · (ex − 1) if x ≤ 0, with α ∈ (0, 1)
(2.39)

σtanh(x) =
ex − e−x

ex + e−x
(2.40)

In an NN, we may generally define different activation functions for every Perceptron. The

common practice is to use a non-saturating function for the hidden layers, whereas the activation

function of the output layer may be a non-saturating function, a saturating function or even just

the unit function. Finally, we may also employ an activation function that combines multiple

26

2.4. Function Approximation

inputs, like the so-called softmax function:

σsoftmax(xn) =
exn∑N
i=1 e

xi
, n = 1, . . . , N, (2.41)

that transforms its N-dimensional input into an N-dimensional output that sums to one. The

softmax function is therefore often used when the NN needs to output a categorical distribution

like, for example, probabilities of an object in an image belonging to a set of classes (e.g. dog vs

cat vs shark) or the probabilities of discrete actions that an RL agent might take.

2.4.2. Learning Neural Network Parameters
Now that we know how to build an NN and how to infer outputs from inputs, we have to discuss

how to obtain a good set of parameters from data. The process of computing a set of parameters

from a given dataset is called training. While there is no unique way of training an NN, the
gradient-based approach that we will describe in this section is considered to be the most

effective of currently-known methods and is responsible for many recent advances in different

areas of Artificial Intelligence.

Loss Functions

In order to adopt a set of parameters so that our model improves at a certain task, we need

to be able to evaluate how well or badly it performs for a specific parameter setting. Using

some quantitative evaluation, the formal goal of a training algorithm is then to find the set of

parameters that maximises a measure of goodness or minimises a measure of badness. In

optimisation, this function is referred to as the objective-function. The loss is an objective-function
that is lower for a better solution. In the example of figure 2.7, we used the MSE as loss function:

MSE
(
x,y

)
=

1

N

N∑
i=1

(
yi − ŷ(xi)

)2
, (2.42)

where xi and yi are the input vector and the correct target value of theN respective data points

of the so-called training set, respectively, and ŷ(xi) is the prediction of the model for a given

input. The MSE thus is a measure of how well our model predicts the correct outputs of the data.

Depending on the operation that we want to learn, we may choose different loss functions. In

the case of the MSE, our goal is to predict a single output value from a vector of inputs. Another

common case is that we want to output a categorical probability distribution instead of a single

value. Here, the most common loss function is the categorical crossentropy:

H
(
x,y

)
=

1

N

N∑
i=1

yi
T · log

(
ŷ(xi)

)
, (2.43)

where yi denotes the distribution over theM different options that we want our network to

predict (a distribution of a known fact is implemented by a probability of 1 for the correct answer)

and ŷ(xi) denotes the prediction of our model. Note that the crossentropy is, in fact, not a

proper measure of how well our prediction matches the target distribution. A more natural

choice would be to use the KL-Divergence as a loss function as it is commonly used to define the

distance between two distributions. However, as we will see later on, we are actually interested

27

2. Reinforcement Learning

0.0 0.2 0.4 0.6 0.8 1.0
slope

0.0

0.2

0.4

0.6

0.8

1.0

of
fs

et

initial guess

0.054
0.106

0.193

0.193

0.315
0.315

0.472

0.472

0.664

Mean Squared Error

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

y

initial guess
10 steps
20 steps
40 steps

Figure 2.11.: Example of the gradient descent algorithm for a linear regression problem. Left:

Blue dots show the individual data points; coloured lines show the predictions of the

linear model after 0, 10, 20 and 40 steps of the gradient descent algorithm. Right:

Contour plot of the MSE for different values of the slope and offset of the linear

model. Coloured dots show the parameters of the lines in the left plot; arrows depict

the computed gradients of the loss function with respect to the two parameters for

every step of the gradient descent algorithm.

in the gradient of the loss function rather than in its value, which turns out to be the same for

crossentropy and KL-Divergence.

There are many more types of loss functions commonly being applied for training NNs. In

general, every function that describes our minimisation goal and that is differentiable w.r.t. the

model parameters may be used.

Gradient Descent

Computing the gradient of the loss function w.r.t. one parameter of our model gives us a local

approximation of how the loss function changes if we modify the parameter. Changing the

respective parameter by a small amount in the opposite direction of the gradient should result

in a model that yields a slightly lower loss function. In the gradient descent algorithm, we adapt

all parameters according to their respective gradients:

θl+1 = θl − α · ∇θJ(x,y, θ)|θ=θl , (2.44)

where J(x,y, θ) is a loss function for a set of data points (x,y), called the training set, and a set

of parameters θl, that is obtained after l iterations of gradient descent. ∇θJ |θ=θl denotes the
vector of partial derivatives of the loss function w.r.t. all parameters, evaluated at θ = θl. The

learning rate α defines the size of the step that is taken. The initial parameters θ0 are usually

some small, random numbers. Figure 2.11 shows how gradient descent finds a set of parameters

for a linear model. The left plot shows a set of data points and four different linear models that

are obtained after some steps of the gradient descent algorithm. The right plot shows the MSE

for the different models and the trajectory of the parameters. The gradients, depicted by black

28

2.4. Function Approximation

arrows in the right image, are computed by:

∇θJ(x,y, θ) =
∂

∂θ

(1

N

N∑
i=1

(
yi − ŷi

)2)
= − 2

N

N∑
i=1

(
1

xi

)
·
(
yi − θ0 − θ1 · xi

)
(2.45)

It is important to note that the optimisation problem is not always as easy to solve as in our

example. In particular, the loss function usually does not have a convex shape with a single

minimum at its centre but may have many local minima as well as flat regions— called plateaus

or saddle points. In general, there can be no guarantee that the global minimum of a non-convex

loss function is found by gradient descent. However, in Neural Networks this turns out not to be

much of a problem since all local minima can be assumed to be somewhat close to the global

minimum (Choromanska et al., 2014). Thus, even though we may not find the optimal solution

that yields the minimal loss, we can at least be confident to have found a ’good’ solution as soon

as our algorithm has converged to any local minimum. Note however that it is not uncommon

that the gradient descent algorithm gets stuck in saddle points.

To compute the gradient of the loss function, we have to apply our model to every single data

point in our training set. While this is easy to do for a model with two parameters and 30 data

points (like in figure 2.11), it takes a lot of computational power for complex models with many

parameters and large training sets. Instead of computing the exact loss function, we therefore

often approximate it by computing it only for a small, random subset of the entire training set.

This algorithm, called Stochastic Gradient Descent (SGD) (Robbins and Monro, 1951), shows

similar convergence as gradient descent and is usually the preferred choice for training NNs.

Using a larger number of training samples to compute the loss results in a better approximation

of the true loss; thus, we have to trade off the accuracy of the gradient against computational

complexity.

It is important to note that there have been many approaches to improve the performance

of gradient descent and SGD. Most notably, the addition of momentum and second-order

approximations have been shown to improve convergence. The concept of momentum lets the

optimiser take a step in a direction that is defined by a weighted combination of the computed

gradient and the direction of the update from the last optimisation step. An optimiser with

momentum can be imagined like a ball that runs down a hill. If the ball weighs next to nothing

(the case of gradient descent without momentum), it easily gets stuck at plateau points. However,

for a heavy ball, the momentum can take the ball over the plateau and prevents it from getting

stuck in a flat region. The second notable addition to gradient descent is the utilisation of

second-order approximations of the loss function, instead of only a linear approximation. This

helps mitigating oscillations of the parameters and preventing divergence due to overly large,

or very slow convergence due to overly small learning rates. In figure 2.11, for example, we

can see that the initial steps of gradient descent are a lot larger than the latter ones as the

MSE-surface gets flatter close to the optimum. Using a second order method, the optimiser

may take larger steps in the flat region and could thus speed up convergence. The Adaptive

Moment Estimation (ADAM) algorithm (Kingma and Ba, 2014) is one of the most commonly used

optimisation algorithms that combines momentum and second-order approximation and will

also be used in this work. We have to note, however, that we cannot generally recommend the

usage of second-order optimisation algorithms due to recent concerns about their convergence

properties (Wilson et al., 2017).

29

2. Reinforcement Learning

Backpropagation of Errors
For a Deep Neural Network, the gradient can be computed by the Backpropagation of Errors
algorithm (Rumelhart et al., 1986). The name Backpropagation originates from the fact that,

after having computed the loss in a forward step, we have to compute the gradient of the output

layer first and then go backwards through the individual layers to compute the gradients. In the

forward pass of the algorithm, we compute the output of our model and store all intermediate

signals. In the backward pass, we compute the gradient of the loss function w.r.t. each of the

weights and biases of the model through the application of the chain rule. First, we compute the

gradient of the loss function w.r.t. the activation of the final layer:

∂J

∂aKL+1,j

=
∂J

∂zKL+1,j

·
∂zKL+1,j

∂aKL+1,j

=
∂J

∂ŷj
· ∂ŷj
∂aKL+1,j

=
∂J

∂ŷj
·
∂σKL+1

∂aKL+1,j

, (2.46)

where the activation ai,j is the weighted sum over the inputs of the j-th Perceptron of the i-th

layer, and the output zi,j is obtained through applying the activation function to the activation.

Note that the first term of the right-hand side is the derivative of the loss function w.r.t. the

predicted output and the second term is the derivative of the activation function w.r.t. its j-th

argument – of both terms we have an analytical form. The gradients of the loss function in the

final layer can then be propagated backwards to compute the gradients in previous layers:

∂J

∂ai,j
=

∂J

∂zi,j
· ∂zi,j
∂ai,j

=
∂σi
∂ai,j

·
Ki+1∑
j′=1

∂J

∂ai+1,j′
· ∂ai+1,j′

∂zi,j

=
∂σi
∂ai,j

·
Ki+1∑
j′=1

θi+1,j′,j ·
∂J

∂ai+1,j′
, i = L,L− 1, . . . , 1.

(2.47)

Knowing the gradient of the activation of one layer ai+1, we can thus infer the gradients of the

preceding layer and can compute the gradient of every layer by going backwards through the

network.

Finally, we can compute the gradients of all parameters of our NN as the derivative of the

respective activations:

∂J

∂θi,j,k
=

∂J

∂ai,j
· ∂ai,j
∂θi,j,k

=
∂J

∂ai,j
· zi−1,k, (2.48)

with zi,0 = 1, z0,j = xj and zL+1,j = yj . Having computed all gradients, we can apply equation

2.44 to adapt the parameters. Note that for clarity of notation, we here only compute the

gradient for a single training sample. To obtain the gradient for a larger training set, we simply

have to average over the gradients of the individual samples.

Figure 2.12 shows a minimal example of the Backpropagation of Errors algorithm for an NN

with a single input and a single output and one hidden layer with one hidden unit. Notice that in

the forward pass, all calculations rely on signals from the respective previous layer while in the

backward pass, all gradients depend on the gradients from the respective subsequent layer.

Initialisation
As a final remark in our introduction to Neural Networks, we want to stress the importance of

good initialisation of parameters. In order to not have all Perceptrons in a layer learn the same

function, we have to initialise the parameters of every Perceptron differently. This is referred

30

2.5. Deep Q-Learning

Figure 2.12.: A minimal example of the Backpropagation of Errors algorithm. In the forward

pass, all signals are computed — beginning from the input and finishing at the

loss function J . In the backward pass, the gradients of the loss function w.r.t. all
parameters are computed— starting from the loss function and going backwards

to the first layer.

to as symmetry-breaking and is usually done by choosing every parameter as a small random
number. However, simply sampling every parameter from some fixed distribution turns out to

result in poor convergence due to the problem of vanishing gradients. The random initialisation

has to be carefully tuned to the number of outputs of the Perceptron preceding the weighted

connection, the number of inputs of the Perceptron following the weighted connection and the

used activation function. Popular initialisation schemes are the so-called Xavier Initialisation

(Glorot and Bengio, 2010) or He Initialisation (He et al., 2015b). For example, for a ReLU activation

function, He Initialisation will assign random values, drawn from a Gaussian with zero mean and

a variance that is inversely proportional to the number of afferents:

var(wi,j,k) =
2

Ki−1
(2.49)

2.5. Deep Q-Learning
We can now replace the tabular action-value function of the Q-Learning algorithm by a Neural

Network. This method — known as Deep Q-Learning (DQL) — is arguably the most widely

known RL algorithm. Even though the idea of using a nonlinear function approximator as the

action-value function has been around for a while, most approaches turned out to be unstable

or divergent (Tsitsiklis et al., 1997). However, using two further adaptions, Mnih et al., 2015

managed to let a DQL agent successfully learn how to play a range of arcade games with raw

pixels as its only input.

The first adaption of Mnih et al., 2015, was to use a replay buffer that saves previously

encountered transitions (s, a, r, s′), as already mentioned in section 2.3.3. At every training step,

the algorithm samples a random batch of previous transitions and executes a step of SGD, using

the MSE of the TD-errors as its loss function. Intuitively, computing a gradient from the last

N encountered steps will result in a biased estimate since the state can be assumed to show

temporal correlations (for instance if our state is the speed and position of a vehicle, we can

31

2. Reinforcement Learning

expect both values to change relatively slowly). This is problematic since the adaption of the

action-value for one state-action pair may also change all other action-values, and small changes

in the action-values can significantly alter the policy. Biases in the gradient can, therefore, prevent

convergence of the DQL algorithm. By sampling from a large replay buffer, the effects of strong

temporal correlations of the state can be mitigated.

The second adaption deals with the correlation in the two action-values of the TD-error (the

action-value of the current state and the action-value of the subsequent state). If two subsequent

states, st and st+1, are very similar, the predicted action-values of the two states, used in the

Bellman equation will also be correlated. With a biased TD-error, the computed gradients are

biased, resulting in poor convergence. Mnih et al., 2015 propose to overcome this correlation by

using two different NNs for the two action-values in the TD-error. WhereasQ(s, a) is predicted

by the model that is being learned, Q(s′, a′) is predicted by the so-called target network. The
target network is not learned through a gradient descent algorithm but periodically copies

the parameters from the learned network (e.g. every 1000 steps of SGD) and is not altered in

between updates. Alternatively, the parameters of the target network can be a low-pass filtered

version of the ones from learned network. The loss function for the DQL algorithm is therefore

approximated by:

JQ ≈
1

N

N∑
i=1

(
r + γmax

a′
Q̂
π

target(s
′
i, a
′)− Q̂

π
(si, ai)

)2
, (2.50)

where N is the number of sampled transitions, Q̂ is the learned network and Q̂target is the

target network. With these two adaptions, the DQN algorithm reliably converges and has been

successfully applied in many different domains. Note that, instead of evaluating the action-value

function for every possible action, it is more common to use the NN to predict all action-values

for a given state at once:

Q̂(s) = (Q̂(s, a1), Q̂(s, a2), . . .) (2.51)

Following the paper of Mnih et al., 2015, many further additions, that improve convergence,

have been proposed. In Hasselt et al., 2015, for example, Double Q-Learning (see section 2.3.3)

is used to mitigate the maximisation bias. In Schaul et al., 2016, the transitions are sampled

non-uniformly from the replay buffer, so that transitions that the NN predicts very badly are

sampled more often than transitions that were already predicted accurately. In Bellemare et al.,

2017, the NN is used to predict a distribution of action-values instead of their expected value.

Many of the proposed adaptions are brought together in Hessel et al., 2017, resulting in an

algorithm that significantly outperforms the original DQL algorithm.

Using a NN to predict action-values solves the problem of very large or continuous state spaces.

However, since our model can only have a finite amount of outputs, we are still limited to a

discrete set of actions that the agent might choose from. For problems that require us to have

continuous actions, the DQL algorithm is therefore not suited.

2.6. Policy Gradient Methods
We have thus far considered RL algorithms that compute an estimation of how good it is to be in

a certain state and to take a certain action. Following a policy then means to select actions that

are expected to yield high discounted returns. These methods are called value-based, as they

rely on the estimation of state- or action-values in the action-selection process. They address the

32

2.6. Policy Gradient Methods

Figure 2.13.: Comparison of action selection for value-based and PG methods in the case of

discrete actions. In value-based methods, the model computes the action-value

for all available actions and chooses the one with the highest expected discounted

return. In PG methods, the action is sampled from a categorical distribution, which

is computed by the policy model.

question of how to behave in a certain situation indirectly, by answering the related question of

what outcome to expect, depending on our behaviour. In many cases, however, we are actually

not interested in the exact value function, raising the question if it is really necessary to estimate

it.

Policy Gradient (PG) methods offer an alternative to value-based methods that approaches

the problem more directly by letting a differentiable parameterised model (e.g. an NN) output

the policy for a given state. Even though we may still want to learn a value function, as it can

improve convergence (see section 2.6.2), we will not need to evaluate it for choosing an action.

Directly learning a policy can be beneficial, as it is oftentimes easier to approximate a policy than

a value function (Sutton and Barto, 2018). Furthermore, optimising a policy with gradient descent

results in a policy that changes smoothly over the course of learning. In contrast, in value-based

methods, a small change in the value function may result in a tremendous change in the policy

due to the maximum operation. For this reason, PG methods provide favourable convergence

guarantees (Sutton and Barto, 2018). Note, however, that in some domains learning a value

function is actually easier than learning the policy so that value-based methods have an edge

over PG methods (e.g. Simsek et al., 2016).

For discrete action spaces, the policy model predicts the probabilities of the individual actions

so that the agent can then sample an action from the predicted distribution. Sampling from a

policy distribution results in the nice property that the agent can learn to act stochastically. This

is an advantage because the optimal policy in environments with high uncertainty may in fact be

stochastic, and because a stochastic policy encourages further exploration. NNs for stochastic

policies often use a softmax function (see section 2.4.1) in the last layer to output a categorical

distribution over actions. We will denote the parameterised policy as a function πθ(a|s) that
maps from a state to a probability distribution over actions, where θ is the set of parameters of

the model. Figure 2.13 shows the process of action selection for value-based methods and for

PG methods in a domain of discrete actions.

Using a PG method, it is also straightforward to implement continuous action spaces by letting

a model predict continuous values. For example, if the actions of the agent are the acceleration

and steering angle of a car, the policy can directly output these two signals. In order to ensure

exploration, it is common practice to add Gaussian noise with zero mean to the value that is

given by the model. The output of the policy model πθ(a|s) in the continuous case can, therefore,
be interpreted as a multivariate Gaussian distribution from that a concrete action is sampled.

Note, however, that the respective dimensions of the action are usually sampled individually,

33

2. Reinforcement Learning

Figure 2.14.: Action distributions for discrete and continuous action-spaces. In the discrete

case, the policy outputs a categorical distribution over the available actions. In

the continuous case, it outputs a Gaussian distribution for every dimension of the

continuous action-space.

meaning that the multivariate Gaussian is constrained to have a diagonal covariance matrix.

Figure 2.14 shows the prediction of an action distribution for the discrete and for the continuous

case. Note that the superscripts in the discrete case identify individual actions, whereas they

denote the dimension of a multidimensional action-space for the continuous case.

The central idea of PG algorithms is that we can differentiate the expected discounted return

V πθ w.r.t. the parameters θ of our model. The gradient is given by the policy gradient theorem:

∇θJπ = ∇θE
[
− V πθ(S)

]
= Eπ

[
−Qπθ(S,A) · ∇θ log

(
πθ(A|S)

)]
(2.52)

whereQπθ is the true action-value function of the policy πθ. Note that, in order to maximise the

state-value function, we need to minimise its negative. The proof of the policy gradient theorem

is a bit lengthy but straightforward and shall not be replicated here. The interested reader is

referred to Sutton and Barto, 2018 for a comprehensive proof under the assumption of discrete

action spaces.

Just as in tabular learning, we again encounter the problem of not knowing the correct

action-value functionQπ
and thus having to estimate it. As we have learned in section 2.3, there

exist several approaches towards approximating the value function through inference from data.

2.6.1. The REINFORCE Algorithm

In section 2.3.2, we used the discounted return of an experienced episode as an unbiased

estimator of the value function. Doing the same for equation 2.52, yields the REINFORCE

algorithm (Williams, 1992). The policy gradient for the REINFORCE algorithm can be computed

as:

∇θJπ ≈ −gt · ∇θ log
(
πθ(a|s)

)
, with s = st, a = at, (2.53)

where gt is the discounted return that is obtained after timestep t. The parameters can therefore

be updated by:

θk+1 = θk + αgt∇θlog
(
πθ(at|st)

)
|θ=θk = θk + αgt

∇θπθ(at|st)|θ=θk
πθ(at|st)

, (2.54)

34

2.6. Policy Gradient Methods

where α is the learning rate. Note that, through averaging over several runs, the variance of the

gradient estimate can be reduced.

The gradient update is the experienced discounted return – times the gradient of taking the

action that was actually executed – divided by the probability of the action. Intuitively this makes

a lot of sense: If the agent receives a large positive discounted return after taking some action,

the probability of taking this action again will be increased; for a negative discounted return the

probability will be decreased. Additionally, if the taken action is highly improbable under the

current policy, the gradient will be even larger so that already probable actions do not get an

advantage through being sampled more often. Note that, since the probabilities of actions must

sum to one, increasing the probability of one action means decreasing the other ones. This also

means that, even if no discounted returns are actually negative, the probability of ’bad’ actions

will be decreased over time because the gradient for good actions is larger than for bad ones.

Like Monte Carlo methods in tabular learning, the REINFORCE update shows relatively high

variance, which can slow down convergence. A widely used measure to reduce variance is to

subtract a so-called baseline b(s) from the estimate, that leaves the gradient estimate unbiased:

∇θJπ ≈ −
(
gt − b(s)

)
· ∇θ log

(
πθ(a|s)

)
, with s = st, a = at. (2.55)

The baseline must not depend on the action or it would bias the gradient. Intuitively, when

two different actions both yield a high return, but one is slightly better than the other, the

REINFORCE gradient for both actions would be very similar, and the policy would converge

only slowly towards preferring the better action. Subtracting a baseline, that is close to the

average discounted return of the two actions, makes the distinction between the two utilities

much clearer. A baseline can thus reduce the variance of the gradient while leaving it unbiased.

Typically, a baseline b(st) that is correlated with gt is chosen, as the magnitude of discounted

returns generally depends on the state. A common choice for the baseline would be a moving

average of the experienced discounted returns or the state-value function, that can be learned

in parallel to the policy.

2.6.2. Actor-Critic Methods
As already discussed in section 2.3.3, the use of the full discounted return comes at the cost of

having to wait until the end of an episode, before the algorithm can learn. The proposed solution

in Temporal Difference Learning was to bootstrap the value function from the subsequent

estimate. This, of course, means that we cannot learn only the policy but must learn the value

function in parallel. Methods that use a bootstrapped estimate of the discounted return in

order to learn a parameterised policy are called Actor-Criticmethods. The actor (the policy) takes
actions and is evaluated for the quality of its actions by the critic (the value function). Note that

introducing the value function as a baseline to the REINFORCE algorithm does not qualify to be

an Actor-Critic algorithm, as it still uses Monte-Carlo estimates of the discounted return.

Replacing the discounted return in equation 2.55 by the bootstrapped value and using the

state-value function as baseline yields:

∇θJπ ≈ −
(
rt + γV̂

π
(st+1)− V̂

π
(s)
)
· ∇θ log

(
πθ(a|s)

)
, with s = st, a = at. (2.56)

Note that δt = rt + γV̂
π
(st+1) − V̂

π
(st) is the TD-error, which is also used to update the

state-value function (compare equation 2.28). The term rt + γV̂
π
(st+1) under the condition

35

2. Reinforcement Learning

s = st, a = at is an estimator of the action-value for the state-action pair, whereas V̂
π
(s) is

the state-value of the state. This difference is often called the advantage, as it represents the
additional discounted return that we expect from taking the respective actions and following the

policy π afterwards, instead of following the current policy all the time. An action that is superior

to the one chosen under the current policy thus has a positive advantage; an inferior action has

a negative advantage. The algorithm that uses 2.56 as the gradient estimate is therefore often

called Advantage Actor-Critic (A2C) (Mnih et al., 2016).
It is important to note that the policy update of Policy Gradient (PG) methods (e.g. equation

2.54) depends on the current policy. REINFORCE as well as A2C are thus on-policy algorithms

(see section 2.3.3), meaning that they need fresh data to learn from. This implicates that we

cannot use transitions that were experienced under an old policy to train the current policy. In

section 2.5, we have seen that the temporal correlation of the state can be problematic as it

can bias the gradient. In DQL this problem was solved by sampling old transition from a replay

buffer instead of using the latest experience. For REINFORCE and Actor-Critic methods, the same

problem is encountered but cannot be solved by a replay buffer due to their on-policy nature.

The original paper of the A2C algorithm (Mnih et al., 2016) proposed to solve the problem of

correlated states by collecting experience from multiple environments, that all follow the current

policy, in parallel. The resulting algorithm was termed Asynchronous Advantage Actor-Critic (A3C).
Note of course, that this option is only available for simulated MDPs.

2.6.3. Natural Gradients and Trust Regions
There are many more extensions that improve over the simple REINFORCE or the Actor-Critic

algorithm. Possibly the most notable is a promising line of research that incorporates so-called

trust-regions. In these methods, the policy is adapted according to the natural gradient (Amari,
1998; Kakade, 2001), meaning that steps of the optimisation algorithm consider the curvature

of the policy that is defined by the parameters of the model. Through this, the policy can be

constrained to change slowly. A slowly changing policy is important, as we cannot "trust" that a

linear approximation of the value function around the current set of parameters will be accurate

enough for a large change of the policy. While these problems technically apply to other domains

of ML, they are especially pronounced in RL, as a large change in policy can strongly alter the

experienced returns and can ultimately lead to divergence. In contrast, algorithms with a fixed

training set can usually recover from a bad gradient step. This phenomenon of a policy suddenly

decreasing in performance is referred to as policy-breaking. To mitigate this, it is, therefore, useful
to take smaller steps in parameter space when small changes constitute a large change in the

policy. Vice versa, if the policy is relatively insensible to the change in the parameters, it makes

sense to take larger steps in order to speed up convergence.

A popular example is the Trust Region Policy Optimisation (TRPO) algorithm (Schulman et al.,
2015), in that the policy is updated under a constraint on the KL-Divergence between the policy

before and after the update. To extract the steepest gradient direction under the constraint,

the curvature of the policy manifold on the parameters of the model is approximated by the

Fisher-Information matrix. Having found an approximate gradient direction, the algorithm then

performs a line-search to find a stepsize that meets the constraint. Note that this algorithm is

largely considered to be too slow to be applied in DRL. In the Proximal Policy Optimisation (PPO)
algorithm (Schulman et al., 2017), a simple linear approximation to the TRPO algorithm is used

that works surprisingly well in practice. In the Actor-Critic using Knoecker-Factored Trust Region

36

2.7. Deterministic Policy Gradients

(ACKTR) algorithm (Wu et al., 2017b), the ideas of trust-regions and second-order optimisation are

combined to form a more stable version of SGD, and Nachum et al., 2017 proposes a trust-region

algorithm that can deal with off-policy data. Under some constraints (that usually cannot be fully

met), trust-region approaches can guarantee a monotonous improvement of the performance

of the agent.

A full review of trust-region approaches is beyond the scope of this work. The interested reader

is encouraged to read the cited publications for an introduction to the application of the natural

gradient in RL and Amari, 2016 for a general introduction to learning from the standpoint of

Riemannian manifolds.

2.7. Deterministic Policy Gradients
As a last step in our introduction to RL, we want to introduce the Deterministic Policy Gradient

(DPG) algorithm. It was first introduced in Silver et al., 2014 and has since developed to be a

standard algorithm in the RL toolbox for solving MDPs with continuous action-spaces. As the

name suggests, DPG is a Policy Gradient algorithm (section 2.6); deterministic here means that

the policy model does not output a probability distribution from that we may sample a concrete

action, but is a deterministic mapping from the state to the action to take. To discriminate

the deterministic from the stochastic policy, we will denote the them by µ(a|s) and π(a|s)
respectively. Note that DPG may be considered a special case of the general PG scenario in

that the probability distribution is infinitely narrow, resulting in only one possible action to be

sampled. In consequence, the expected value over the probabilistic variable A in equation 2.52

can be replaced by the deterministic action resulting in the deterministic policy gradient theorem:

∇θJπ = ∇θE
[
−Qµθ

(
S, µθ(S)

)]
= E

[
−∇θµθ(S)∇aQµθ

(
S, a)

)
|a=µθ(S)

]
. (2.57)

Note that, because of the deterministic actions, we can apply the chain rule.

As discussed earlier, it is generally infeasible to obtain the exact action-value function or its

derivative. However, following the approach of Actor-Critic algorithms, we may replace the

action-value function in 2.57 by a learned, differentiable model. We thus learn two different

models: a policy model µθ(s) that maps from states to actions and one value model Qω(s, a)

that predicts the expected discounted return for specific states and actions, with the set of

parameters θ and ω respectively. The policy can then be improved as to maximise the discounted

return that the action-value function model approximates. When converged, the policy greedily

selects those actions that are predicted to yield the highest discounted return. It is obvious that

both models need to be carefully tuned in order to learn a good solution, as a good policy cannot

be found without an accurate approximation of the action-value function, and without a good

policy, the action-value function cannot learn about superior outcomes.

The DPG algorithm generalises DQL to the case of continuous action spaces by replacing

the multiple outputs of the action-value function model (compare figure 2.13) by a model that

predicts the value for a continuous action and then learning a policy that maximises it. Instead

of the policy, we could also learn only the action-value function and then use some algorithm to

find a maximum in the predicted values. However, this turns out to be far more computationally

expensive. Figure 2.15 shows a comparison of architecture and training of different PG methods.

Using a policy that deterministically chooses an action for a given state comes with a problem

37

2. Reinforcement Learning

Figure 2.15.: Comparison of architecture and training of different Policy Gradient methods. All

methods learn a policy function to select actions. Advantage Actor-Critic and DPG

additionally learn a value function, where the former uses the value function to

estimate the discounted return that is needed for the gradient estimate, while the

latter uses the chain rule to differentiate the policy parameters w.r.t. the estimated

value function.

of insufficient exploration. Without the introduction of some randomness in the policy, the

algorithm can easily settle for some suboptimal action while leaving superior options untried.

One solution to this problem is to execute some different, exploring policy while learning the

deterministic policy in an off-policy fashion. To do so, we need the training of both models to be

independent from the policy that generates the transitions. Since the policy gradient does not

depend on the former policy, we simply have to choose some off-policy algorithm for learning

the action-value function (for example Q-Learning).

2.7.1. Deep Deterministic Policy Gradients
While the original version of DPG was not intended to be used with large DNNs, the same

research group later proposed some tweaks that made DPG usable with DNNs (Lillicrap et al.,

2015). The most significant change was the use of target networks for bootstrapping the value

function (compare section 2.5). A second adaption was the use of batch normalisation, in that all

features of the state of a batch of sampled transitions are normalised to have unit mean and

variance. The full DDPG algorithm thus reads:

δt = rt+1 + γQ̂ω′
t

(
st+1, µθ′(st+1)

)
− Q̂ωt

(st, at) (2.58)

ωt+1 = ωt + αωδt∇ωQ̂ω(st, at)|ω=ωt (2.59)

θt+1 = θt + αθ∇θµθ(st)|θ=θt · ∇aQ̂ωt

(
st, a)

)
|a=µθ(st), (2.60)

where θ′ and ω′ denote the parameters of the target policy and the target action-value function,

respectively. The two learning rates are denoted αθ and αω.

38

2.7. Deterministic Policy Gradients

2.7.2. The Reparameterisation Trick
As already mentioned, the policy that is followed is usually a noisy version of the deterministic

policy in order to ensure sufficient exploration. We therefore need to introduce some stochastic

nodes into our policy model. Ironically, this makes the policy of the Deterministic Policy Gradient

algorithm non-deterministic.

Unfortunately, sampling from a policy distribution is problematic since we cannot differentiate

the sampling operation w.r.t. the sufficient statistic and, therefore, cannot use the backpropaga-

tion algorithm to train the model. In order to avoid the differentiation "through" the stochastic

nodes, the so-called reparameterisation trick is applied (Kingma and Welling, 2014; Rezende et al.,
2014). Here, the stochastic nodes are reparameterised into deterministic nodes, that take as

input the sufficient statistic and a random input with constant statistics. For example, a Gaussian

distribution with a given mean and standard deviation can be reparameterised as a function of

mean, standard deviation and a standard normal distribution:

N (µ, σ) = µ+ σ · N (0, 1), (2.61)

where N (µ, σ) denotes the normal distribution with mean µ and standard deviation σ. Note

that the right hand side of equation 2.61 can be easily differentiated w.r.t. µ and σ and thus w.r.t.

the parameters θ that deterministically define them. In DPG, the policy outputs the deterministic

action µ and the variance of the stochastic exploration-policy is chosen to be some fixed value.

The DPG algorithm is mostly used for continuous action domains. For small discrete spaces, it

is usually more efficient to use the DQL algorithm as it is easier to predict action-values for all

available options and choose the best one. There are special cases, however, in that has been

found to be beneficial to apply DPG to discrete action spaces. In Dulac-Arnold et al., 2015 for

example, it is applied to select actions from very large discrete spaces. Instead of sampling the

action from a categorical distribution, the discrete actions are embedded into a continuous space.

The continuous policy outputs a continuous action and the discrete embedding that, according

to some metric, is closest to the output is executed. In Mordatch and Abbeel, 2017, a population

of agents use a continuous policy to navigate an environment and can communicate with each

other through discrete symbols. The policy model, therefore, needs to output continuous as well

as discrete signals.

Reparameterising a categorical distribution, as is needed in order to sample an action from a

discrete space with DPG, is slightly more complicated than for the Gaussian policy. Maddison

et al., 2016 and Jang et al., 2016 independently suggest to use a soft relaxation of the discrete

distribution. The two groups called this distribution Concrete distribution and Gumbel-Softmax
distribution, respectively; here, we will use the later one. For a number of n discrete actions, the
model outputs n values yk that sum to one:

yk =
exp

(
(log πk +Gk)/λ

)∑n
i=1 exp

(
(log πi +Gi)/λ

) , with Gi ∼ Gumbel(0, 1), (2.62)

where πk are the probabilities of the categorical distribution, produced by the policy model. The

independent random samples of the Gumbel(0,1) distribution (Gumbel, 1954) can be produced

by log(log(u)) where u is sampled from a uniform distribution between 0 and 1. Taking the

argmax function arg maxk(log πk + Gk), we obtain the discrete action. The action ak is then,

in fact, sampled with probability πk. Note that in equation 2.62, we use the softmax function

(compare equation 2.41). The softmax is here used as a continuous, differentiable approximation

39

2. Reinforcement Learning

Figure 2.16.: The reparameterisation trick reformulates a sampling operation so that we may use

Backpropagation through deterministic nodes. The upper row shows the original

form of the sampling operation, and the lower row shows the reparameterised form

for a Gaussian distribution on the left and a Categorical distribution on the right.

Squares denote deterministic nodes and circles stochastic ones.

to the argmax function so that we may use the Backpropagation algorithm. The temperature

parameter λ defines the closeness of the Gumbel-Softmax to the argmax. As the temperature

approaches 0, the Gumbel-Softmax converges to the argmax, whereas at larger temperatures

the Gumbel-Softmax becomes uniform.

Figure 2.16 shows the reparameterisation of a Gaussian (left) and a Categorical distribution

(right). Squares denote deterministic nodes and circles stochastic ones. Note that through the

reparameterisation, the stochastic parts are considered leaf nodes in the computation graph.

We thus do not need to differentiate the sampling operation and can use Backpropagation to

differentiate through a completely deterministic path. In the original form, on the other hand,

the signal passes "through" the stochastic nodes, and we cannot compute the gradient.

Computing the gradient with the Gumbel-Softmax trick turns out to result in a biased estimate

of the gradient. In later publications (Tucker et al., 2017; Grathwohl et al., 2017), better estimators

were introduced that eliminate the bias at the cost of introducing additional control variates.

2.7.3. Further Improvements of DDPG
DDPG has been successfully applied to a range of continuous control tasks. However, the

original version (Lillicrap et al., 2015) turns out to be brittle and sensitive to the setting of

hyperparameters and is thus hard to use (Duan et al., 2016; Henderson et al., 2017). Since the

original publication, many improvements have been suggested, some of which we will make use

of in this work. Most of the modifications intent to improve the estimation of the action-value

function and have already been used and proven beneficial in DQL.

D4PG
In Barth-Maron et al., 2018 the Distributed Distributional Deterministic Policy Gradient (D4PG)

algorithm is introduced. It augments the action-value function to predict a distribution of values

40

2.7. Deterministic Policy Gradients

instead of a single expected value (this is similar to Bellemare et al., 2017), which turns out to

provide a better, more stable learning signal. The authors here choose to use a categorical

distribution over a number of predefined bins and can thus use the categorical crossentropy

(equation 2.43) as a loss function.

Furthermore, the training of the action-values is using n-step returns, which was suggested in

Sutton, 1988. Using the next n rewards and bootstrapping from the state at timestep t+n results

in a better estimator of the discounted return and speeds up convergence of the action-value

function. The TD-error thus reads:

δt =
n∑
i=1

γi−1rt+i + γnQ̂
(
st+n, µ(st+n)

)
− Q̂(st, at) (2.63)

Note that n-step bootstrapping in the DDPG setting is technically verboten since the actions,

executed during the n steps are chosen w.r.t. an old policy. This makes the learning algorithm

on-policy and thus prohibits the utilisation of a replay buffer. However, in practice, it turns out

that the better estimation of the discounted return outweighs the violation of the off-policy

regime as long as n is chosen to be moderately small. In Barth-Maron et al., 2018, a value of n=5

shows to drastically improve convergence speed and stability of learning.

The utilisation of a prioritised replay buffer was suggested for DQL in Schaul et al., 2016 and

improves convergence by sampling those transitions more often from the replay buffer, that are

poorly predicted by the learned action-value function. In the D4PG algorithm, using a prioritised

replay buffer led to a slight improvement in convergence. However, the small advantage was

considered not to justify the added computational expense.

Finally, Barth-Maron et al., 2018 suggest to collect experience from several environment

simulations in parallel (compare Horgan et al., 2018). The individual simulations can simply add

the experienced transitions to a shared replay buffer, and an independent process can then

sample from the buffer due to the off-policy nature of the Q-Learning algorithm. While this

modification does nothing to the learning process of the algorithm itself, it can greatly improve

the speed of convergence in terms of wall-clock time.

ADPG-R

Popov et al., 2017 propose in the Asynchronous DPG with Variable Replay Steps (ADPG-R)

algorithm to not only use several instances to simulate the environment and collect experience

but also to use several instances that sample from the replay buffer and apply the computed

gradients to the shared parameters of the learned model. This version of distributed learning is

a bit more involved than the former one but can further boost the speed of convergence.

Additionally, the paper suggests to augment the reward signal in environments with very

sparse rewards to incorporate some intermediate goals and also to occasionally let the agent

start in more advanced situations. For example, a robotic arm that needs to pick up a brick and

move it to some destination would learn faster if it got a reward for picking up the brick instead

of only getting rewarded for completing the entire task. The robotic arm could also occasionally

start out with the brick already placed in its hand. Both modifications improve the convergence

in environments in that rewards are sparse. In order to improve data efficiency, Popov et al.,

2017 also propose to do several gradient steps for every step in the environment. This can also

help the learning process, as it allows the learned model to converge on the available data before

adding more data to the replay buffer.

41

2. Reinforcement Learning

TD3
Fujimoto et al., 2018 introduce the Twin-Delayed Deep Deterministic Policy Gradient (TD3)

algorithm which proposes three adjustments to DDPG.

Firstly and most importantly, it suggests to use Double Q-Learning, which alleviates the

maximisation bias of the Q-Learning algorithm (compare section 2.3.3 and 2.5). In Double

Q-Learning, the overestimation due to the explicit maximum over the action-values was mitigated

through decoupling the maximisation and the prediction of the action-value. The subsequent

action (of the action-value to bootstrap from) is optimised for one model and then the value

from a different model is used in the TD-error (see equation 2.34). In contrast, in DPG, the

maximisation is implicit through the deterministic policy that tries to maximise the approximated

value function. The Double Q-Learning algorithm therefore needs to be adapted, in order to be

applied in the DPG setting. Fujimoto et al., 2018 propose to independently approximate two

action-value function and bootstrap from the one that predicts smaller values. The TD-error thus

results to:

δt = rt+1 + γmin
(
Q̂ω1

(
st+1, µ(st+1)

)
, Q̂ω2

(
st+1, µ(st+1)

))
− Q̂ω1

(st, at)

δ′t = rt+1 + γmin
(
Q̂ω1

(
st+1, µ(st+1)

)
, Q̂ω2

(
st+1, µ(st+1)

))
− Q̂ω2

(st, at),
(2.64)

where ω1 and ω2 are the parameters of the two models, and δt and δ
′
t are the TD-errors,

used to update the respective parameters. Even though, technically, minimising over the two

overestimated functions does not yield an unbiased estimator of the true action-value function,

in practice, this adaptation shows to be able to mitigate the bias and improve convergence.

Secondly, the parameters of the policy model are updated less frequently than those of the

action-value function. For example, we could only use the gradients of every other batch to

update the policy. This can stabilise convergence, as a well approximated action-value function

is essential for the policy to improve.

Finally, the paper suggests adding truncated, zero-mean Gaussian noise to the bootstrapped

value function, which results in a smoother approximation of the action-value function, that

generalises better to previously unseen states.

2.7.4. Soft Actor-Critic
Haarnoja et al., 2018a propose the Soft Actor-Critic (SAC) algorithm that uses the same Double

Q-Learning approach as TD3. The SAC algorithm learns a stochastic instead of a deterministic

policy and is thus technically not a DPG algorithm. However, even though it takes a different

approach, the two algorithms end up being very similar.

In order to encourage sufficient exploration of the stochastic policy, the SAC algorithm

augments the reward function by an entropy term that rewards randomness in the action

selection. In addition to the action-value function and the policy, the state-value function is

learned; it is then used in the update equation of the action-value function to increase the

stability of learning. The state-value function can be learned by tracking the action-value function

without using the action as an input. The loss functions of the action- and state-value function

thus read:

JV = Eπ
[(
V̂ ψ(St)− Q̂ω(St, At) + logπθ(At|St)

)2]
(2.65)

JQ = Eπ
[(
Q̂ω(St, At)−Rt+1 − γV̂ ψ(St+1)

)2]
, , (2.66)

42

2.7. Deterministic Policy Gradients

where ψ, ω and θ are the parameters of the state-value function, the action-value function and

the policy, respectively. The action-value function is learned as in previous methods, with the

exception that it bootstraps from the state-value function instead of bootstrapping from itself in

a later state. This stabilises convergence as, for a stochastic policy, the state-value function is a

better approximator of the value of state st+1 than the action-value function of a sampled action.

The state-value function is learned to track the action-value function without the knowledge of

the action to take. It is thus an approximator of the expected value of the action-value function

with actions drawn from the stochastic policy. Minimising the entropy term logπθ(At|St) levels
out the action-probabilities so that the learned policy may be as random as possible while

achieving high rewards. Importantly, the actions in equations 2.65 and 2.66 are selected by the

stochastic policy, which is why a gradient descent algorithm has to average over the state- and

the action-space; in DPG the actions are deterministic and gradient descent only averages over

the state-space. For this reason, DPG algorithms are usually considered to need fewer data to

converge to a solution.

The policy selects those actions with a high predicted action-value with high probability and

those with low action-values with smaller probability. It can be distilled by reducing the KL

Divergence between the policy-distribution and the softmax distribution of the action-values:

Jπ = Eπ
[
DKL

(
πθ(A|S)

∣∣∣∣∣∣exp(Q̂ω(S,A))

Zω(S)

)]
= Eπ

[
−H

(
πθ(a|S)

)
+ logZω(S)− Q̂ω(A,S)

] (2.67)

whereH
(
πθ(a|S)

)
denotes the entropy of the action-distribution, andDKL(X||Y) denotes the

KL-Divergence of the distributionsX and Y . The strategy of the SAC algorithm is thus to assign

exponentially higher probabilities to those actions that have a higher predicted utility. As this

distribution is not necessarily realisable by the parameterised policy, it is projected onto the

policy so that the two are as close as possible.

Through the softmax, the policy distribution depends on the scale of the predicted action-

values. This means that an agent that receives a reward of one for every successful step in the

environment will behave differently than an agent that receives a reward of 10. This dependence

on the scale of the rewards can be eliminated by a rescaling of the reward signal: r′ = βr.

Haarnoja et al., 2018a state the scaling factor β to be the only parameter in the SAC algorithm

that has to be tuned carefully in order for the algorithm to converge. In a later paper (Haarnoja

et al., 2018b), the algorithm was enhanced to automatically adapt the scaling parameter in order

for the policy-distribution to admit some desired level of entropy.

Note that for continuous action-spaces, computing the partition function Zω(s) (which is

needed so that the action-probabilities sum to one) is actually infeasible. However, as it does not

depend on the policy parameters, it does not appear in the gradient:

∇θJπ = ∇θEπ
[
H
(
πθ(a|S)

)
− Q̂ω(S,A)

]
. (2.68)

Comparing the resulting gradient to the deterministic policy gradient (equation 2.57), we observe

that, even though the conceptual ideas of the two algorithms are very different, they result to be

very similar. Of course, due to the different natures of the two policies, the policy-gradient of

DPG and SAC differ in some points. The obvious difference is the entropy term in equation 2.68.

Intuitively, DPG optimises the policy to deterministically select the action that has the highest

value; the entropy term in SAC ensures that the policy will stay stochastic and only favours

43

2. Reinforcement Learning

those actions that yield higher discounted returns by assigning them a higher probability. The

second, less obvious difference is that the action in the policy gradient is deterministic in DPG

and stochastic in SAC. The former, therefore, often converges faster than the latter because it

does not have to average over the action-space.

We have discussed many different algorithms of Reinforcement Learning. In general, we would

suggest selecting algorithms that are as complicated as needed. In particular, when the state-

and action-space naturally fall into discrete options and are sufficiently small, we would suggest

applying Temporal Difference Learning algorithms like SARSA or Q-Learning (section 2.3.3), as

they have stronger convergence guarantees than methods that use function approximation.

If the state-space is continuous or too large and shows some spatial coherence that can be

leveraged to make better decisions, Deep Q-Learning (section 2.5) or an Actor-Critic method

(section 2.6.2) would be the preferred choice. Finally, if the action-space is continuous, SAC and

TD3 may be considered the state-of-the-art.

This concludes our treatment of the Reinforcement Learning framework. We have tried to

introduce those concepts that are made use of in this thesis in as much detail as needed, without

getting lost in the specifics. It is important to note that the described methods only represent a

small slice of a much broader framework, and many fundamental concepts were not introduced

here. In the next chapter, we will take a close look at the specifics of traffic control and will

thereafter try to apply the RL framework to it.

44

3. Road Traffic Control
Mobility and transportation have played an important role throughout all human history, and

their relevance in modern society is ever-increasing. Until the early 20th century, private

transportation means were only available to a privileged few, and intricate traffic regulation

was avoidable due to the scarcity and limited velocity of privately owned vehicles. Decreasing

production cost and increasing availability of motorised vehicles— in particular through the

start of mass production of the Ford Model T in 1913 (McShane, 1999)— alongside a general

rise in income and standard of living in industrialised nations, led to increasing transportation

demands and left the number of vehicles soaring to ever-new heights throughout the second

half of the last century (Papageorgiou, 2004). An increasing number of traffic participants using a

common traffic infrastructure without sophisticated regulation, naturally, induces congestion

and accidents. These problems led to many advancements in traffic infrastructure and legislation

that largely mitigated the problem of diminished safety in road traffic and, for the most part,

made the utilisation of private vehicles a relatively low-risk experience.

Modern road traffic is a complex system comprised of many autonomous entities that show

a versatile range of different behaviours and all act to pursue their individual goals. In large

parts, traffic flows are guided by passive regulations that predefine a framework of how traffic

participants should behave in order to provide safe travels for everyone. Apart from universally

applicable legal restrictions (like driving on the right side of the road or granting right of way

to vehicles on the right hand road of an intersection), traffic signs, road surface markings and

other static measures provide a means to tailor the regulation in a particular road section to the

respective requirements and, once implemented, passively govern the traffic system. However,

passive regulations are often not sufficient to ensure the safety and efficiency of the traffic

system and have to be enhanced by actuated measures that actively regulate the traffic flow

in a road network. This is particularly true in crowded cities, where traffic volume is high, and

congestion poses a threat to safety and causes high economic costs due to commuter delay.

There exist many different measures that can be implemented to actively guide traffic flows.

The most important and impactful is the implementation of traffic lights (Papageorgiou, 2004),

which we will focus on in this work. Other measures include adaptive speed limits (Al-Dweik

et al., 2017), barriers, reversible lanes that can switch direction of travel (Wu et al., 2009) and

ramp metering (Papageorgiou and Kotsialos, 2002). Traffic lights have been observed to not only

decrease the risk of accidents but also, if applied correctly, to be able to increase the throughput

of the traffic network significantly. In this chapter, we will discuss the control of road traffic

45

3. Road Traffic Control

Figure 3.1.: A traffic light phase cycle of an intersection with four different phases. All phases

consist of only compatible streams. The first and last phase have a higher split than

the other two. Each green period needs to be followed by an intergreen period, that

can be further subdivided into the amber and the all red period.

with traffic lights. We will first explain the common terminology in urban traffic control and the

problem of congestion. Then, we outline what are the factors that make traffic control hard and

explain some of the existing control methods that are implemented in major cities around the

world. Subsequently, we will give a brief overview of the simulation of traffic scenarios, which

not only serves as the evaluation of new traffic strategies but is an essential prerequisite for the

application of many traditional control schemes. Finally, we will discuss the emerging possibility

of fast, reliable Vehicle to Infrastructure (V2I) communication. This chapter is partly based on

Papageorgiou, 2004.

3.1. Traffic Lights
Of particular interest in traffic networks are intersections (also called junctions)— at that two or
more routes interfere— as they are focal points for both safety and efficiency. Traffic lights are

used to control traffic flow at intersections or pedestrian crossings by sequentially granting the

right of way to different streams. In this work, we will focus on intersections that only consist
of streams of motorised vehicles and neglect the need to account for pedestrians, cyclists or

other non-motorised means of transportation. A stream is defined as a trajectory of a group of

vehicles that go from an entry point to an exit point of the intersection. In a so-called phase or
stage, a subset of the possible streams is simultaneously allowed the right of way. A traffic light
iterates between allowing the right of way to different phases in a phase cycle. The set of phases
and the respective streams that each phase comprises of is referred to as the phase scheme, the
time that every phase is allocated within the phase cycle is called its phase time and the sum of
all phase times is the cycle time. The relative phase times of the different phases are called the
phase split. Figure 3.1 shows a phase cycle, consisting of four different phases. Note that the first
and last phase have a higher split than the other two. The depicted cycle gives the right of way

to only one of the afferent streets at a time, which naturally results in compatible streams. In

this work we will generally assume right hand traffic.

46

3.1. Traffic Lights

Figure 3.2.: Two popular phase schemes. In the opposing streets approach, the traffic light grants

the right of way to two opposing streets at a time and allows straights and right-turns

in one phase and left-turns in another phase. In the single street approach, right of

way is granted to all streams, that originate from one particular street.

Individual streams that form a phase are called compatible if they can all cross the intersection
without interfering with each other, and a set of streams that are non-compatible is called

antagonistic. Of course, it is generally preferable if phases consist of only compatible streams,
as antagonistic streams that simultaneously have the right of way tend to increase the risk

of accidents. In between the phases, intergreen times are needed to avoid interference of
antagonistic streams and to ensure safety. Intergreen times can be further subdivided into an

amber period, in that vehicles of the phase that is losing the right of way have time to break or
enter the intersection if they are already too close to come to a halt before the traffic light, and

an all red period, to allow all vehicles and pedestrians to clear the junction. Importantly, whereas
the phase times can be adapted to match current traffic demands, the intergreen times are

subject to the intersection’s geometry and, for safety reasons, may not be altered. Switching the

phase, therefore, is always linked to a loss of throughput.

In most cases, a traffic light is required to grant the right of way to every stream at least once

in its phase cycle. To improve throughput and reduce latency of every stream, most approaches

allocate as many compatible streams as possible to each phase. Figure 3.2 shows two popular,

fully compatible phase schemes which we will here call opposing streets approach and single
street approach, respectively. Numbers denote the position of the shown phase within the phase
cycle; arrows show the streams that make up each phase. In the opposing streets approach,

right of way is always granted to a pair of opposing streams. In one phase, the right-turn and

the straight streams are given right of way, and in another phase, the two opposing left-turn

streams can cross the intersection. In the single street approach, right of way is granted to all

flows that originate from one afferent street at once. Depending on the particular structure

of an intersection, many more phase schemes may be employed. In areas with limited traffic

volumes, it may be beneficial to compose phases of several antagonistic streams and prioritise

the interfering ones. In particular, a phase including all flows that originate from two opposing

streets is not an uncommon sight. In this case, the left-turn stream is of lesser priority and

has to grant the right of way to the other streams. Another common choice is always to allow

right-turns as long as no other stream is disturbed (a green arrow).

Oftentimes, a single traffic light cannot be viewed as an isolated system but is a part of a

47

3. Road Traffic Control

larger network. Choosing a phase scheme and a phase split for every traffic light in a system

individually, thus, may not lead to efficient utilisation of the traffic network so that individual

traffic lights may need to be coordinated by a so-called offset. The offset defines when the phase
cycle of a particular traffic light is started with respect to some reference timepoint. In particular,

several traffic lights alongside a road can be assigned increasing offsets, that correspond to the

average travel time between them, to create a so-called green wave in that a stream of vehicles
can traverse the entire street without having to stop.

3.2. Traffic Congestion
The demand is the average rate of vehicles of a stream that arrive at an intersection. The
saturation flow is the average rate of vehicles of a stream, that can cross the intersection under
the current phase scheme and split. In undersaturated traffic conditions— when the demand is
lower than the saturation flow— queues that build up during the red phase of a stream can

dissolve during the green phase. In oversaturated traffic conditions, queues keep building up,
leading to ever-increasing levels of congestion in the traffic network.

In most cases, traffic volumes vary over time so that congestion that builds up during a time,

can dissolve later on. In an idealised traffic model, arriving vehicles queue up during high demand

periods and, after some delay, cross the intersection. The throughput at the intersection thus

increases with rising demand until the saturation flow is met, and the throughput stagnates.

In this case, higher demand can thus result in higher delays of individual vehicles but will

not decrease the rate at which vehicles cross the intersection. Unfortunately, in reality, rising

congestion levels lead to a degraded use of the available infrastructure and thus decreasing

throughput. The mutual impediment of vehicles in congested traffic then leads to even faster

formation of more congestion. Through this feedback-loop, congestion reinforces itself, leading

to ever-decreasing throughput and increasing delays. In the worst case, a gridlock situation arises
in that intersections are blocked by vehicles and the throughput plummets down to near-zero.

The direct effects of increased congestion are, alongside heightened risk of accidents, increased

emissions and pollution, rising noise levels as well as stressed commuters (Papageorgiou, 2004).

According to recent studies, congestion in the European Union costs approximately 1% of its

annual GDP (European Comission, 2017), and commuters in crowded cities spend up to 200

hours per year, stuck in traffic (Inrix, 2018). Due to these unfavourable dynamics and effects,

minimising and dissolving congestion as fast as possible is of tremendous economic, social

and environmental interest. Increasing throughput in a ’brute force’ approach of continuous

expansion of road infrastructure is expensive and often limited by existing infrastructure or other

social or environmental factors. A more efficient utilisation of existing road infrastructure thus

is of particular interest as it provides a cost-efficient measure to mitigate congestion, increase

throughput and decrease delays.

The original introduction of the electric traffic light in 1914 in Cleveland (McShane, 1999) and

its widespread integration in the first half of the 20th century, was driven by safety concerns.

However, it was soon realised that, if carefully tuned, traffic lights can significantly increase the

throughput of the traffic network whilst keeping risk-levels low. Approaches towards designing

an intelligent traffic control system by choosing sensible parameters (phase scheme, phase split,

cycle time and offset) for all installed traffic lights were first investigated in the 1930s (Gartner

et al., 2001) and have been an area of active research ever-since. The long, ongoing development

of advancements in the field is reminiscent of the inherent difficulty of the traffic control problem.

48

3.3. What Makes Traffic Control Hard

3.3. What Makes Traffic Control Hard
Finding the optimal parameter configuration for a set of traffic lights turns out to be difficult for

a number of reasons:

• Maybe the most obvious problem is the high dimensionality of the parameter space; jointly

choosing a phase scheme, a phase split, a cycle time and an offset for all junctions in a

large area admits a combinatorial number of discrete parameter configurations alongside

a high-dimensional continuous parameter space, which is notoriously hard to optimise.

• Furthermore, it is often unclear, which quantities we actually want to optimise. While it is

rather obvious to maximise throughput and minimise delay, these two quantities turn out

to negatively influence one another. Moreover, there may be other factors to consider,

that cannot be simply rendered into a numeric indicator. For example, we may want to

take into account social factors like fairness or environmental factors like air pollution.

• Another aspect that makes traffic systems hard to optimise is the presence of unpredictable

behaviours and disturbances like accidents, blockage due to illegal parking, passing

ambulance or police cars, and many more.

• Moreover, in many cases the current state of the traffic network is hard to determine due

to sparsity of sensors and noisy measurements.

• Finally, traffic light control is subject to tight real-time constraints which render impractical

many slow optimisation algorithms of the traffic policy, conditioned on the current traffic

state.

Theses insurmountable difficulties render an optimal solution infeasible for more than a

single intersection and force control strategies to introduce several limiting simplifications and

heuristics that generally may at least lead to a good solution, if not the optimal one (Papageorgiou,

2004).

3.4. Traditional Control Methods
After many years of research, there exists a wide variety of different control strategies, imple-

mented in many cities around the world. Because of various factors like the heterogeneity

of traffic situations or the availability of communication infrastructure, a centralised traffic

management system and expert know-how, there does not exist a single unified solution to

the traffic control problem. In fact, even within most cities, traffic control does not follow a

homogeneous strategy but consist of many individual, heterogeneous solutions, each considering

only a single or a small number of intersections. It is beyond the scope of this work to give

credit to the entire breadth of these control strategies. In this section, we will try to give a coarse

overview of different approaches and briefly explain some of the more popular algorithms.

Most existing control strategies can roughly be categorised alongside two axes (Gartner et al.,

2001; Papageorgiou, 2004):

Responsiveness Fixed-time strategies are based on traffic counts that are collected offline.
Oftentimes, signalling is then selected to match the historical statistics and take into

account various temporal patterns like rush-hours in the morning and late afternoon,

49

3. Road Traffic Control

decreased traffic volume on weekends or commuter traffic, that leads to high volumes

entering a city in the morning and leaving it in the afternoon. Problematically, because

fixed-time strategies cannot adapt to current traffic conditions, they are only suited to

deal with under-saturated traffic conditions. Traffic-responsive strategies utilise real-time
information of the traffic system, which is typically collected by inductive loop sensors in

the streets but may also include data sources like video surveillance or weather reports.

From the knowledge about the current traffic state, a controller can compute appropriate

signalling.

Coordination Isolated strategies consider only a single traffic light. For these strategies, it is
often possible to find an optimal solution to the traffic control problem. However, since

the traffic light is only one part of a larger system, this solution will probably not be

optimal when evaluated on a network scale. Coordinated strategies consider a system of
many intersections, whose individual behaviours strongly interact. Jointly computing a

configuration for many intersections can lead to significantly better solutions. However,

the sheer size of the optimisation problem often renders finding the optimal solution

infeasible.

In the following, we will further discuss the advantages of the different control strategies and

introduce some of the most widely used algorithms.

3.4.1. Isolated Fixed-Time Control
Isolated control is the simplest of all approaches as it neglects both the need to cooperate with

other intersections as well as to adapt to current traffic. Since no current measurements have

to be taken into account, strategies can be computed offline from historical data and are thus

not subject to real-time constraints. Furthermore, due to the lack of coordination between

intersections, the offset parameter does not have to be tuned. In the so-called stage-based
strategies, the phase scheme is predefined so that only the phase split and the cycle length

have to be computed. The continuous nature of the optimisation problem allows us to solve it

with methods of linear programming. Popular stage-based strategies are, for example, SIGSET
(Allsop, 1971), that minimises total intersection delay or SIGCAP (Allsop, 1976) that maximises the
intersections capacity. Considering the phase scheme as part of the optimisation problem as

in Improta and Cantarella, 1984 results in a much more demanding optimisation problem as it

includes both continuous as well as discrete elements but can lead to better strategies.

3.4.2. Coordinated Fixed-Time Control
Isolated control strategies can only lead to locally optimal behaviour, which will often lead to

inefficient utilisation of the road infrastructure on a network scale. In particular in crowded

areas, where efficient control is of particular importance, isolated strategies therefore often fail

to mitigate the formation of congestion effectively. In contrast, coordinated behaviour across

multiple junctions can lead to significantly better utilisation of the infrastructure. However,

as always, more sophisticated strategies requires a more intricate optimisation process. Two

famous examples are the MAXBAND (Little, 1966) and the Traffic Network Study Tool (TRANSYT)
algorithm (Robertson, 1969).

MAXBAND was designed to address traffic settings of many intersections along a two-way

arterial road. It computes offsets for all traffic lights as to maximise the number of vehicles

50

3.4. Traditional Control Methods

that can traverse the arterial without ever stopping (a green wave). This can be formulated and

solved by mixed integer linear programming. Later on, some extensions to MAXBAND were

introduced. In the SAFEBAND algorithm, over-speeding is discouraged by switching the next light

of the arterial just in time to let the vehicles pass that did respect the respective speed limits,

and in the MULTIBAND (Stamatiadis and Gartner, 1996) algorithm the individual bandwidths of

the respective connecting roads between the intersections are taken into account.

TRANSYT is the most broadly known and most frequently implemented signal control strategy

and is therefore often used as a reference-frame to assess the performance of more advanced

methods (Papageorgiou, 2004). It tries to globally minimise waiting times and the number of

stops within the traffic network, by using a mix of heuristic search algorithms like hill-climbing

and genetic algorithms. It can also include more advanced performance measures like fuel

consumption. To optimise the parameters, TRANSYT employs a macroscopic network model to

simulate the traffic flow and then iteratively adapts splits, offsets and cycle times of all traffic

lights in small steps until a local minimum is found. Since its introduction in the 1969, TRANSYT

has been further developed (the current version is TRANSYT 15.5) to, for example, include more

sophisticated traffic models, optimise the parameters more efficiently or to better incorporate

real-world data. Note that, as with all fixed-time strategies, the optimisation process can be

computed offline and is thus not bound by any real-time constraints.

3.4.3. Isolated Responsive Control
Fixed-time strategies derive reoccurring patterns from historical data and presume that future

traffic demand will follow these patterns. Of course, this is a crude oversimplification. Even if

daily or weekly patterns are taken into account, traffic volumes show strong variance and more

often than not, the true demand will differ from the one considered by the fixed-time controller.

Furthermore, due to changing commuter patterns and infrastructure changes— like a new mall

or closed roads due to building sites — mean values of the traffic statistics may shift over a

longer time period. These inaccuracies lead to under-performing strategies, increased delays

and decreased throughput, even if the fixed-time algorithm converges to the optimal parameter

setting (which it rarely ever does). Considering the current traffic state through information from

sensory input thus has the potential to find more efficient traffic strategies that can adapt to

changing requirements on both a short- and a long-term scale.

Inmost cases, sensory input of responsive control strategies is limited to inductive loop sensors

that are located in all approaching lanes of the intersection. As no coordination with other traffic

lights is required, the phase times can be altered arbitrarily. In quiet areas with low traffic

volumes, the right of way often is given by default to the main road and is only granted to lower

priority roads, if a vehicle approaches the intersection on that road. In areas with higher traffic

volume, more sophisticated algorithms are needed. For example, the Microprocessor Optimised
Vehicle Actuation (MOVA) algorithm (Vincent and Young, 1986) uses a method developed in Miller,
1963, in that the controller decides in discrete timesteps whether or not it is time to proceed to

the next stage. This decision is made through an estimation of the net time gains and losses of

vehicles in afferent streets based on the current measurements of the induction loop sensors.

For undersaturated traffic, MOVA aims to disperse all queues that have built up at the afferent

roads. In a congested state, it switches to a strategy that maximises the throughput. In contrast

to the fixed-time regime, the calculations of a responsive strategy are executed during runtime

and are thus subject to tight real-time constraints.

51

3. Road Traffic Control

3.4.4. Coordinated Responsive Control
Coordinated responsive control can be considered the most powerful but also the most demand-

ing of the strategies that have been discussed so far. Deriving a joint signalling plan during

runtime is no trivial task and is only feasible when employing some simplifying assumptions.

The Split Cycle Offset Optimisation Technique (SCOOT) (Hunt and Robertson, 1982) was

originally developed by the Transport and Road Research Laboratory in the UK and has been

further advanced ever since. In different studies it showed to reduce average delay by around

15-30%, compared to Fixed-Time Strategies like TRANSYT (e.g. Kergaye et al., 2008). SCOOT is

heavily adapted throughout large parts of the UK and is also employed in other major cities

around the world like Madrid, Bangkok, Beijing and Toronto. In particular, it is known for

automating 6.000 junctions in 4.500 installations throughout London, and it was famously

applied to mitigate congestion in the ’Olympic Route Network’ during the 2012 Olympics. SCOOT

uses data from loop detectors, located around 100-300 m from the intersection, to estimate car

arrival profiles. It then adapts splits, offsets and cycle time to minimise waiting times and the

number of stops throughout the network. The parameters are adapted in small, incremental

steps by a hill-climbing algorithm that runs on a central server. To facilitate coordination, the

cycle time is equal for all intersections. Due to the strong similarities, SCOOT is often called the

traffic-responsive version of TRANSYT (Papageorgiou, 2004). Due to the long distance between

intersections and respective loop sensors, congested traffic conditions are recognised rather

late. When SCOOT registers long queues, it switches to a regime that prioritises the diffusion of

congestion over the original goal of minimisation of travel time and stops.

The formerly introduced traffic control strategies all aim to optimise splits, offsets and cycle

times of the controlled intersections (phase schemes are often predefined). Furthermore, there

exist a variety of more advanced strategies that, given a predefined phase scheme, try to find

optimal lengths for the current phases. These algorithms rely on sophisticated traffic models

to optimise some performance index. Popular examples are PRODYN (Henry et al., 1983) and

CRONOS (Boillot, 1994) that solve the optimisation problem by dynamic programming methods.

Realistic traffic models include discrete variables to reflect the impact of red/green phases on

traffic flow (Papageorgiou, 2004), which leads to an exponential complexity of the optimisation

problem and thus renders an optimal solution for more than a few intersections infeasible.

So-called store-and-forward approaches employ simplified, continuous traffic models to trade off
the accuracy of the solution against the complexity of the problem.

Figure 3.3 depicts the formerly discussed, traditional control strategies alongside the axes of

coordination and responsiveness.

3.4.5. Drawbacks of Traditional Traffic Control Strategies
All discussed control strategies show some individual strengths and weaknesses. As with most

optimisation approaches, a more accurate solution generally introduces additional complexity.

For isolated control strategies, the optimal control strategy can often be found, whereas, for

coordinated control of many intersections, the optimal solution quickly becomes unfeasible.

However, on a network scale, the coordinated approaches often find better solutions. Respon-

sive control strategies can adapt to current traffic situations but add the burden of real-time

constraints and increased complexity of the optimisation problem, which can thus only be met

with additional computational power. Coordinated responsive control can, therefore, only be

applied to relatively small traffic networks. The common practice is to optimise small subsets of

52

3.5. Traffic Simulation

Figure 3.3.: Overview of the here-presented traditional control strategies and a categorisation

alongside the coordination- and the responsiveness-axis.

the entire traffic network independently, which generally leads to suboptimal behaviour on a

network scale.

A problem of most of the discussed methods is their dependence on some traffic model that

is used to optimise the configuration. While a more sophisticated model can lead to better

solutions, it is oftentimes also more complex to optimise, again demanding a trade-off between

accuracy and complexity. In particular, the utilisation of discrete variables in the model puts

a severe strain on the scalability of the control strategy. Furthermore, all simulations have to

introduce some simplifications and are thus prone to biases, introduced by the poor quality

of the traffic model. Finally, most traditional approaches are limited to relatively slow changes

in their policy and are thus often unable to adapt to rapidly changing demands or unexpected

incidents.

3.5. Traffic Simulation
Traffic simulations are an essential measure for evaluating the efficiency of traffic networks.

It provides cheap and safe means to investigate the impact of changes to road infrastructure,

traffic light signalling or traffic legislation on the dynamics of the traffic system. Furthermore,

as we have seen in the preceding section, the optimisation of signalling behaviours generally

requires a model of the traffic network in that the optimisation algorithm can freely change the

configuration of all intersections and simulate the possible impact of applied changes on some

objective function, like the throughput of the traffic network. Based on historical arrival profiles

(fixed-time strategies) or current measurements from loop sensors (responsive strategies), the

algorithm can then compute optimal or near-optimal configurations that are subsequently

applied in the real traffic system.

A significant amount of effort has been put into the simulation of urban traffic networks,

spawning a wide range of methods and software packages. For any project that researches traffic

systems, the choice of a simulation approach and a software implementation is an essential one

as it can have a strong influence on the outcome of experiments. Approaches can be roughly

divided into two categories (Kotusevski and Hawick, 2009):

• Microscopic approaches view traffic as individual vehicles that navigate the traffic network

and are simulated individually. Each vehicle behaves according to some local condition

of the traffic network (like the phase of a traffic light or the position and speed of the

53

3. Road Traffic Control

vehicle in front) and some individual parameters (like a destination or personal driving

preferences).

• Macroscopic approaches consider traffic from a more abstract, statistical standpoint.

Instead of considering individual vehicles, streams are described as vehicle densities that

contract at intersections and disperse in free flow. The movement of vehicles in a traffic

network can then be described in terms of fluid dynamics with vehicle densities instead of

fluid densities and traffic lights instead of valves.

As one can imagine, individually modelling each autonomous vehicle and pedestrian is a

lot more computationally expensive than the statistical view of macroscopic models. This

problem is especially pronounced for large-scale simulations of many intersections. Furthermore,

macroscopic models are usually easier to optimise as they model vehicle flows as continuous

variables instead of discrete units. On the other hand, the more realistic setting of individual

entities can model real-world traffic more precisely and thus leads to more accurate predictions.

For small traffic networks of only a few intersections, that require detailed simulation, microscopic

simulators should be used. In large-scale simulations of entire cities, the exact behaviour of

individual vehicles is often not important, which is why a macroscopic simulator could be

preferable in these situations.

In the following, the simulation software which will be used throughout this work will be briefly

introduced.

3.5.1. SUMO
Simulation of Urban MObility (SUMO) is an open-source traffic simulator that is developed by the

German Aerospace Center (DLR) (Behrisch et al., 2011). It can simulate a versatile range of traffic

scenarios that consist of roads, intersections, traffic lights, inductive loop sensors and much

more. The scenario is inhabited by different classes of autonomous units such as cars, trucks,

motorcycles, emergency vehicles, public transport and pedestrians. Traffic networks can be

generated either by manually defining roads and intersections or by using netconvert, a program
that generates SUMO-networks from a range of common formats like Open Street Map (OSM)

files. The simulated networks can be visualised in a graphical user-interface using OpenGL.

SUMO is a purely microscopic simulator, meaning that every vehicle is simulated as an

individual entity. Note that, being a microscopic simulator, SUMO is well suited for small-scale

simulations but shows poor performance when used to simulate entire cities. The traffic network

is simulated in discrete, equidistant timesteps (the default timestep is one second) in that vehicles

move according to some model of driving-behaviour. The simulation is space-continuous, and

a vehicle’s position is described by the lane that it is on and the distance to the beginning

of this lane. Note that the positioning of vehicles on one of a discrete set of lanes assumes

highly ordered traffic that may be found in developed nations, where cars are the predominant

vehicle-class. However, in many developing countries, where traffic mostly consists of motorised

rickshaws and motorcycles that show a more continuous lateral motion pattern, the assumption

of lane-based traffic may be highly inaccurate.

A vehicle is identified by an ID, a departure time and its route through the network. Further-

more, it can be described in more detail. The departure and arrival properties can be further

specified for example by defining desired lanes on that the simulation should be entered or

left. A vehicle can be assigned a type, that has certain physical properties like the length, that

defines the space that it occupies on its lane, or the weight, which changes its acceleration and

54

3.5. Traffic Simulation

deceleration properties. Other variables change the vehicle’s appearance in the graphical user

interface. Furthermore, a pollutant and noise emissions class can be assigned (Behrisch et al.,

2011).

The driving behaviour is defined by a longitudinal controller, the so-called car-following model,

and a lateral controller, the so-called lane-changing model. The car-following model is used to

accelerate and decelerate on a lane. Most controllers intent to drive as fast as possible and

allowed, while maintaining a safe distance to the vehicle in front. The lane-changing model

defines when to switch lanes. Lane changes are necessary when the currently occupied lane

does not allow the desired turn. Furthermore, switching the lane can be beneficial if vehicles

on another lane move faster or other queues are shorter. The default car-following model is an

adapted version of the one introduced in Krauss, 1998 and the used lane-changing model was

developed in Krajzewicz, 2010.

At the beginning of a simulation, a set of vehicles is placed at predefined locations. Additional

vehicles can be generated during the simulation, according to a so-called Origin-Destination-

Matrix that defines the number of vehicles that traverse the network from a specified origin to

a specified destination within a certain timeframe. The exact trajectory from the origin to the

destination can then be inferred by standard routing algorithms. Alternatively, vehicles can enter

the network at specified points and then randomly turn at every intersection until an outgoing

lane is reached.

The Traffic Control Interface (TraCI) (Wegener et al., 2008) allows the user to interact with a

running simulation via a socket connection. It is thus possible to change almost all parameters of

the SUMO simulation during runtime so that we may externally control cars, traffic lights, speed

limits, available turning options and many more.

3.5.2. Flow
Flow is an open-source Python framework that is created and developed in the Mobile Sensing

Lab at the University of California, Berkeley (Wu et al., 2017a). It provides a framework to study

the application of Deep Reinforcement Learning to various traffic settings, including traffic light

control and driving behaviour of autonomous vehicles. It can be used with the two popular

microscopic traffic simulators SUMO and AIMSUN (here we will only use SUMO). Flow provides

a lightweight interface that frames the time-discrete traffic simulation as an MDP. To initialise,

reset and advance the simulated environment, it utilises the API of the popular OpenAI Gym

framework (Brockman et al., 2016), which is used to benchmark RL algorithms on a broad range

of open-source environments. Apart from the environment, Flow also includes two popular

libraries of RL algorithms, Berkeley RLL’s rllab (Duan et al., 2016) and RISELabs’s RLlib (Liang et al.,

2017), which feature state-of-the-art algorithms like DDPG (section 2.7.1) or TRPO (section 2.6.3).

It thus implements the entire agent-environment interaction loop (see figure 2.1), including the

training of a policy and therefore strongly facilitates the investigation of RL algorithms in traffic

control scenarios.

Flow includes a range of predefined environments like the ’Ring-Road’ environment (Wu et al.,

2017a), that can be used to study the effect of autonomous vehicles on the stability of traffic flow

on a circular road; or the ’Merge’ environment (Vinitsky et al., 2018) in that autonomous vehicles

are trained to speed up the traffic at an on-ramp merge. In addition to the included examples,

users can create their own environments. The design of individual traffic environments in Flow is

separated into a so-called ’scenario’ and an ’environment’ class. The scenario defines parts of

55

3. Road Traffic Control

the system that are static elements of the traffic simulation like roads, intersections, entrance

and exit routes of the network, inflows, traffic lights, loop detectors as well as the lateral and

longitudinal controllers of vehicles. The environment class acts as an interface for RL algorithms

and thus needs to define the observation- and action-space as well as the reward function of the

MDP.

Vehicles that are not controlled by an RL agent can employ a range of different longitudinal

and lateral controllers. Flow includes all of SUMO’s default controllers and also facilitates the

implementation of new ones. Non-RL-controlled traffic lights employ a fixed phase scheme,

phase split and duration and may also include information that is collected from a loop sensor

that is placed at a specified distance before the traffic light.

In discrete timesteps, the RL agent controls the simulation by choosing actions, that are condi-

tioned on the current observation, respectively the history of previous actions and observations.

Flow then translates the chosen actions of the agent to TraCI commands to apply them to the

SUMO simulation and advances the simulation by the defined time interval. Note that through

TraCI’s plethora of possibilities to influence a running SUMO simulation, the action space of an RL

agent can also include a wide range of different control measures. Finally, the obtained reward

as well as the subsequent observation are computed and returned to the RL algorithm. At the

end of an episode, the simulation is reset to its initial state.

3.6. Vehicle to Infrastructure Communication
The term Vehicle to Infrastructure (V2I) communication describes the wireless, bidirectional

exchange of information between individual vehicles and the traffic infrastructure. While

mostly being merely a vision of innovative minds in both academia and industry and only

being implemented in small-scale pilot projects, widespread adoption is assumed to be around

the corner and expected to impact almost all aspects of modern road traffic (Arena and Pau,

2019). On the one hand, the infrastructure can inform individual drivers about the traffic situation

in the road ahead to alleviate the risk of accidents, or it could advise about a reasonable speed to

catch the next green light just in time and thus increase traffic flow. On the other hand, detailed

information about the state of individual vehicles could enable the infrastructure to make better

control decisions, such as the smarter control of traffic lights and speed limits to increase safety

and efficiency or to automatically charge the drivers account for parking fees and highway tolls.

V2I is only a part of the larger Vehicle to X (V2X) framework that also includes direct vehicle to

vehicle (V2V) communication which can enable cooperative behaviour, such as platooning among

a group of several automated vehicles.

An important distinction in smart traffic applications that are enabled through V2I and V2V

is the one between safety-relevant applications, like adaptive traffic light control, and non-

safety-relevant applications, like the collection of parking fees. Safety-relevant applications

tend to regulate certain aspects of the traffic system in real-time and thus have to adhere to

tight schedules. Apart from suitable hard- and software, those applications therefore demand

low-latency communication interfaces that enable the transmission of state information within

a timeframe of only a few milliseconds. To this end, different communication standards may

offer a low-latency and high-throughput interface, and new standards are needed for the safe

operation of V2X applications. In particular, the IEEE 802.11p standard has explicitly been

introduced for wireless access in vehicular environments (Arena and Pau, 2019) and the European

Union reserves a 30 MHz frequency band at 5,9 GHz for the communication of Intelligent

56

3.6. Vehicle to Infrastructure Communication

Transportation System (ITS) (Shi and Sung, 2014). The short transmission range of the IEEE 802.11

standard, however, demands a dense net of devices to form an ad-hoc mesh network to transmit

information over larger distances. Cellular technologies like UMTS and LTE offer an alternative to

short-range transmission. Especially the emerging 5G standard is expected to show a latency as

low as one millisecond as well as staggering throughput of up to 10 Gbit/s for a plethora of up to

100 billion independent devices (Peramandai Govindasamy, 2015; Salvatori, 2016) and is thus

well equipped to enable intricate real-time control decisions in V2X scenarios.

The widespread deployment of fast internet and the installation of suitable communication

hardware in vehicles and infrastructure is only one side of the application of ITS. Once able to

share real-time information among the local traffic infrastructure and nearby vehicles, we face the

question of how to make use of the vast amounts of data and how to translate the unstructured

information into concrete control decisions. Data sources, as well as control domains, can be

manifold. As already mentioned, the traffic system may control traffic lights, speed limits, speed

and route suggestions to individual drivers, acceleration and steering-angles of autonomous

vehicles and more. In the decision process, the system may consider position and velocity of

all vehicles as well as other features of individual vehicles such as maximal acceleration and

deceleration, physical proportions, emissions and noise levels, or even vital parameters of the

driver and other occupants, such as fatigue or stress. Furthermore, many other factors may

be taken into account, such as weather conditions or data from surveillance cameras that may

track pedestrians and cyclists. As one can imagine, optimising such a complex system is not a

trivial task, especially when considering the tight real-time constraints of the control problem.

A unified, optimal solution is clearly infeasible, and the problem needs to be decomposed into

smaller, manageable sub-problems.

This concludes our treatment of traffic systems in general and traditional traffic control

specifically. In the next chapter, we will combine the two preceding ones (Reinforcement Learning

and traffic light control) to develop an intelligent system that learns to control traffic lights with a

Neural Network as the controller.

57

4. Deep Reinforcement Learning
for Urban Traffic Light Control

In chapter 2, we discussed the Reinforcement Learning framework which is used to learn a

controller— called the policy— through interaction with an environment that is framed as a

Markov Decision Process. Subsequently, in chapter 3, we introduced the traffic control problem

and explained why more intelligent traffic light control strategies could cause ample economic,

environmental and social benefits, but also why the optimisation of traffic control policies is

no trivial problem and asks for new, elaborate optimisation algorithms. In this chapter, we will

connect the two fields and develop an attempt to learn the intelligent control of traffic lights

through the application of a DRL algorithm. First, we will analyse the potential strengths of traffic

control policies and their advantages over traditional traffic control strategies. We also discuss

some expected obstacles that might make it difficult to learn an intelligent control strategy.

Subsequently, we will present related work and analyse several recent approaches of RL for

traffic control. We will then review the approach that is used in this work: First, we discuss

the traffic control MDP and explain observation- and action-spaces, as well as the used reward

signal. Then, the entire RL architecture is described, including the employed RL algorithm and NN

function-approximators. Finally, we will briefly analyse the option of deploying an RL controller

in a real-world traffic system.

4.1. Advantages of RL for Traffic Light Control
RL and especially DRL control strategies show promising characteristics that may enable them to

better manage complex traffic systems than traditional approaches, and allow them to cope with

the vast amounts of traffic data that are made available through emerging V2I communication.

These anticipated advantages include:

Ability to handle large state-spaces – Whereas for other control algorithms it is often unclear

how to deal with large amounts of unstructured input-data, the ability of NNs to structure

data and to detect reoccurring patterns enables a DRL algorithm to effortlessly handle

large state-spaces. A DRL traffic controller could thus be well suited to handle the large

data-streams that individual vehicles may transmit via a V2I communication interface.

59

4. Deep Reinforcement Learning for Urban Traffic Light Control

No traffic model is needed – Traditional traffic control strategies often employ some model

of the traffic network that is used to optimise phase schemes, splits and offsets (see section

3.3). Inaccuracies and simplifying assumptions are inherent to every traffic model and

can lead to suboptimal solutions and erroneous predictions. RL methods— at least the

ones used in this work — are model-free, meaning that no explicit model of the traffic

system is required to learn a good policy. These algorithms could, therefore, eliminate a

major source of errors of traditional systems. Note, however, that we will often still use a

model to obtain simulated experiences as collecting experience in the real world might be

inefficient and sometimes even dangerous.

Ability to quickly adapt to changing traffic conditions – Most traditional traffic control strate-

gies gradually adapt phase splits and offsets of a set of intersections and are thus slow

to adjust to changing traffic conditions. RL controllers, on the other hand, may utilise an

action-space that allows the adaption to changing conditions within seconds. Action-spaces

may very well be designed to let the agent replicate the behaviour of a traditional approach

but also to quickly adapt to changing conditions in case of an unforeseen event.

No iterative optimisation in the inference pass – Responsive strategies (such as SCOOT)

rely on iterative optimisation of the control strategy at runtime, leveraging some simulated

model of the traffic system. As control systems are subject to tight real-time constraints, the

traffic controller may need to execute a control decision before the optimisation algorithm

has converged. An NN does not apply any iterative optimisation and has a relatively fast

inference pass. DRL controllers are therefore able to output a definite control action within

a comparably slow timeframe and satisfy the real-time constraints of the traffic system

without the need to compromise the quality of the executed control decisions.

Better scalability – The complexity of coordinated traditional control strategies (e.g. TRANSYT)

often grows exponentially with the number of considered intersections and renders many

approaches infeasible for anything more than a small handful of coordinated traffic

lights. DRL strategies certainly also have their limits when scaling up to the coordinated

control of many intersections. However, these methods tend to scale a lot better with

the number of considered junctions (see section 4.5). Furthermore, a DRL agent can

easily be enhanced to a Multi-Agent Reinforcement Learning (MARL) setting in that several

independent controllers learn to navigate their respective part of the traffic infrastructure

and to cooperate through communication among the agents, breaking up the control

problem into smaller, manageable sub-problems.

4.2. Challenges of RL for Traffic Light Control
Even though RL methods show great promise and have been successfully applied towards solving

various difficult control problems in simulated environments (e.g. Mnih et al., 2015; Duan et al.,

2016), the instances of it being applied in real-world and safety-relevant systems are limited. This

is due to some general problems in RL that are hard to overcome. For the application of an RL

controller to the traffic control problem in particular, prominent pitfalls are:

No optimality claims or convergence guarantees – A general problem of DRL algorithms

is that there can rarely be made any claims on the optimality of a found solution. The

unsatisfying practice is mostly that RL systems are trained until their performance no

60

4.2. Challenges of RL for Traffic Light Control

longer increases. Even though the resulting policy is often able to outperform other

state-of-the-art controllers, there usually is no notion of whether or not the performance

might increase even more. It is generally possible that a different learning algorithm or

a different architecture of the used NNs may result in a better policy. Even worse, for

a specific algorithm and configuration, different runs may yield different results and a

particular learned policy might severely underperform. The reason for this is partly that

DRL algorithms initialise the parameters of the used NNs by some random values and

that the resulting model strongly depends on these initial values. An RL traffic engineer

would therefore be faced with the question if a trained system is good enough or should

be further improved, without having a clear notion of what a good solution might be and

how hard it is to obtain a better one.

No hard performance guarantees – NN-policies are notoriously hard to analyse and under-

stand. In so-called adversarial attacks, it is often shown that a small, unusual change in

the input signal of a NN can lead to a completely different output signal (e.g. Kurakin

et al., 2016; Fawaz et al., 2019). It is therefore difficult to make any definite claims on the

behaviour and the safety of a learned policy, as a small change in the input signal may

lead to unexpected, radically different behaviour. Such unexpected behaviour may have

disastrous results in safety-relevant systems such as traffic lights.

Poor sample-efficiency and risky exploration – Most RL algorithms suffer from poor sample-

efficiency, meaning that it may take many sampled interactions before a good policy is

found. For example, the AlphaGo Zero algorithm, that learned to play the game of Go

through self-play, was trained in 29 million games during 40 days and still kept getting

better (Silver et al., 2017). In simulated environments, poor sample-efficiency is mostly

unproblematic; however, when learning from real-world experience, training times of

learning-based approaches may be prohibitively long. In the traffic control setting, for

example, traffic authorities could probably not afford to let a poorly performing policy

control traffic during rush-hours. Moreover, the trial-and-error learning approach and an

unconverged traffic policy at the beginning of training may cause poor performance that

can lead to inefficient and even dangerous traffic situations. Note that issues due to unsafe

exploration are an active area of research, and many publications propose approaches

towards safe exploratory actions (e.g. Lütjens et al., 2018; Koller et al., 2018).

Combinatorial action-spaces are hard to handle – A common choice of the action-space of

an RL traffic light would let an agent choose the next of a discrete set of phases that a traffic

light will display. If a traffic light admits Ni different phase options, jointly selecting the

phases ofM intersections will result inNall :=
∏M
i=1Ni different options. If ,for example,

we would train a DQL algorithm (see section 2.5) to predict allNall action-values, the NN

would needNall output nodes. This combinatorial scaling of the action-space puts a strain

on the number of intersections that we may optimise jointly.

Slow convergence for broad action-spaces – An RL algorithm may employ different action-

spaces that provide different degrees of freedom. For example, the agent could make

small adjustments to phase splits and offsets and thus create an action-space that results

in similar strategies as traditional approaches such as SCOOT. However, this choice of

an action-space is limiting to the kinds of strategies that the DRL agent can implement.

A broader set of possible behaviours could, for instance, be implemented by letting the

61

4. Deep Reinforcement Learning for Urban Traffic Light Control

agent choose the appropriate phase at every timestep (e.g. every second). This is a more

flexible formulation as the latter approach could very well replicate all behaviours of the

former but not vice versa. On the other hand, the first approach might converge faster

because it is easier to optimise. In particular, the exploratory actions of the latter approach

could result in very short phase times and predominant intergreen times, as a constant

phase would require the agent to take the same action many times (e.g. if we want to

implement one minute of a particular phase, the policy would need to sample this action

60 times in a row, and any exploratory action would force the traffic light to go through the

amber and the all red period). Exploratory action in the first approach, on the other hand,

would only cause a small change in the phase split of the intersection. The approach with

the broader action-space could therefore take considerably longer to find a good policy.

Delayed rewards – Most MDPs do not give direct feedback on the taken actions but reward the

agent for good actions after a significant time delay. The agent is consequently faced with

the challenge to figure out which actions led to high rewards and which did not. Changing

the phase of a traffic light lets it go through the intergreen phase, commanding all vehicles

to break and halt. When the new phase is shown, vehicles may take a while to reach full

speed. Common reward-functions, such as the average velocity or the average trip-time,

thus may be strongly decreased for an intermediate timeframe after the agent selects a

new phase, even when the decision was appropriate. Furthermore, some actions may

have little effect on the environment. For example, executed actions during the intergreen

time may be ignored, or a policy that controls the phase split may have no effect on what

is happening when the split of the phase that is altered is not currently shown. This is in

contrast to control problems with more immediate feedback (e.g. in Atari games like Pong,

the up action will result in an instantaneous movement of the paddle). The agent may

therefore struggle to learn which are the outcomes of its actions.

Some of the discussed challenges might be alleviated through a good choice of the used RL

algorithm or a suitable action-space. Others are inherent to the general RL framework and are

thus hard to avoid. In the following, we will explain the methods that are used in this work,

including the RL algorithm and the full MDP of the traffic system, and explain how our design

choices may influence the relevance of the aforementioned advantages and challenges of traffic

light control with RL.

4.3. Related Work
Reinforcement Learning is not a new idea and research towards the application to real-world

problems has a long and ongoing history. First approaches of applying RL algorithms in the

domain of adaptive traffic signal control date back to the 1990s (e.g. Mikami and Kakazu, 1994;

Thorpe, 1998). In the 2010s, the advent of deep learning algorithms led to an ongoing increase of

research efforts inML in general and RL in particular (Henderson et al., 2017), spawning a plethora

of research articles that utilise NNs to learn value-functions and policies. Approaches to apply

the RL framework to the traffic control problem can therefore be divided into two categories:

approaches relying on classical RL, such as tabular methods or linear function approximation,

and those utilising modern DRL. Table 4.1 shows an excerpt of publications of both classical and

modern approaches.

62

4.3. Related Work

MDP RL

observations actions rewards algorithm DRL MARL

Richter et al.,

2006

current phase, current

phase duration, detec-

tor information & infor-

mation about incoming

flows from neighbour-

ing intersections

next phase to be

activated; in 16

timesteps each

phase needs to be

activated at least

once

throughput of the

intersection (local)

Natural

Policy

Gradient

7 3

Shoufeng

et al., 2008

total delay at the inter-

section

phase times for a

predefined phase

scheme

total delay at the in-

tersection (global)

Q-Learning 7 7

Arel et al.,

2010

delay for every affer-

ent lane, relative to the

average delay for lo-

cal and neighbouring

intersections

next phase to be

activated

relative reduction

in cumulative delay

at the intersection

(local)

Q-Learning 7 3

El-Tantawy

et al., 2013

current phase, time of

current phase & max-

imum queue lengths

associated with each

phase

next phase to be

activated

reduction in cumu-

lative delay of all ve-

hicles (local)

Q-Learning 7 3

Prabuchandran

et al., 2015

time since last activa-

tion for each phase &

queue lengths of affer-

ent lanes

next phase to be

activated

combination of neg-

ative average delay

of vehicles and neg-

ative red-time for

each phase (local)

Q-Learning 7 3

Mannion

et al., 2016

current phase, time of

current phase & max-

imum queue lengths

associated with each

phase

stay with current

phase or advance

to the next

comparison of 3

reward functions,

including queue

lengths & waiting

times (local)

Q-Learning 7 3

Van der Pol

and Oliehoek,

2016

binary matrix of the po-

sitions of vehicles on

the lanes & current

phase information

next phase to be

activated

waiting times,

delays, teleports,

emergency stops

(indicate crashes

or jams) & phase

switches (local)

DQL 3 3

Casas, 2017 average velocity of ve-

hicles for every affer-

ent lane

phase split of a

predefined phase

scheme; 80% of

cycle time is allo-

cated by the agent,

20% is fixed

velocities of each

lane (global)

DDPG 3 7

Mousavi

et al., 2017

overview images of the

intersection for the last

four timesteps

next phase to be

activated

reduction in cumu-

lative delay of all ve-

hicles (only 1 inter-

section)

DQL & PG 3 7

Liu et al.,

2017

binary matrix of vehi-

cle positions, matrix

of velocities & current

phases of local and

neighbouring intersec-

tions

next phase to be

activated

quadratic waiting

time; loosely

relates to driver

patience (global)

DQL 3 3

Zhang et al.,

2018

number of vehicles and

distance of nearest ve-

hicle for all afferent

lanes, current phase

and phase time, indica-

tor of amber period &

daytime

keep the current

traffic light phase,

or to switch to the

next

velocity relative to

its maximal value

(global)

DQL 3 3

Table 4.1.: Previous Reinforcement Learning approaches for adaptive traffic signal control.

63

4. Deep Reinforcement Learning for Urban Traffic Light Control

Classic RL leverages tabular representations or simple approximators of the action-value

function to find actions that promise high reward. These methods include algorithms like

SARSA and Q-Learning (see section 2.3.3), with Q-Learning being the most popular option for

the traffic control problem (e.g. Richter et al., 2006; Salkham et al., 2008; El-Tantawy et al.,

2013; Prabuchandran et al., 2015; Mannion et al., 2016). El-Tantawy et al., 2014 gives a review

of popular publications. DRL algorithms are able to encompass large or even continuous

observation- and action-spaces. For example, Casas, 2017 learns a centralised controller that

simultaneously controls a large number of traffic lights, leveraging a large amount of traffic

data. Other publications use camera images of the traffic scenario (Mousavi et al., 2017) or

spatial matrices of positions and velocities (Van der Pol and Oliehoek, 2016; Liu et al., 2017) as

observation, leveraging the power of Convolutional Neural Networks (CNNs) to deal with large,

spatially correlated input data such as images. Apart from the learning algorithm, the presented

methods differ in the nature of the observations, actions and rewards.

The observation representation defines the basis on which an agent can make decisions. Many

works feature some high-level description of the traffic state like queue lengths or vehicle counts

for all afferent roads of an intersection (e.g. Thorpe, 1998; Wiering, 2000; Oliveira Boschetti et al.,

2006; Salkham et al., 2008; Mannion et al., 2016; Zhang et al., 2018) or the vehicle delay at an

intersection (e.g. Shoufeng et al., 2008; Arel et al., 2010; Medina and Benekohal, 2012). Other

publications like Richter et al., 2006 argue that this information is rarely available in a real-world

traffic system and therefore operate on the partial traffic information that can be inferred from

inductive loop detectors. Furthermore, depending on the action-space, most approaches feature

some information about the current observation of the traffic lights, like the current phase and

phase times (e.g. Richter et al., 2006; El-Tantawy et al., 2013; Mannion et al., 2016; Van der Pol

and Oliehoek, 2016), or the time that a specific phase has not been activated (e.g. Prabuchandran

et al., 2015). Some works also feature other data like average velocities of vehicles in afferent

lanes (Casas, 2017) or the current daytime (Zhang et al., 2018).

Many publications consider a fixed phase scheme and let the agent decide upon the respective

length of each phase time, e.g. by deciding in every timestep whether to advance to the next

phase or to stay with the old one (e.g. Thorpe, 1998; Oliveira Boschetti et al., 2006; Shoufeng

et al., 2008; Mannion et al., 2016). A different, broader approach lets the agent select the next

phase from a predetermined set and thus allows for variable phase sequences (e.g. Richter

et al., 2006; Salkham et al., 2008; Arel et al., 2010; El-Tantawy et al., 2013; Prabuchandran et al.,

2015). The generality of the latter approach is, however, often weakened by long intervals in

between actions (e.g. 5 seconds in Richter et al., 2006 or 20 seconds in Arel et al., 2010). Another

distinguishing factor is the number of distinct phases that the agent may choose from (e.g. 2 in

Mousavi et al., 2017 or 4 in Liu et al., 2017).

The reward function defines what the agent tries to achieve; therefore, it embodies the

characteristics that we want the traffic system to display, which can range from efficiency (e.g. a

low average trip time) to social or environmental aspects (e.g. low noise levels or CO2 emissions).

Most publications try to optimise measures like the throughput (e.g. Richter et al., 2006), the

average delay (e.g. Shoufeng et al., 2008; Arel et al., 2010; El-Tantawy et al., 2013), queue lengths

(e.g. Mannion et al., 2016) or average velocity (e.g. Casas, 2017; Zhang et al., 2018). Other, not

so common measures include the average quadratic waiting time, which loosely represents a

drivers patience (Liu et al., 2017), or a penalty for teleports and emergency stops of vehicles,

which indicate crashes and traffic jams in SUMO (Van der Pol and Oliehoek, 2016). Some of these

measures are strongly related (e.g. an increased average delay will result in decreased average

64

4.3. Related Work

velocity), whereas others might not correlate or may even be antagonistic (e.g. CO2 emissions

and average velocity). Some publications therefore try to optimise a weighted combination of

several measures (e.g. Prabuchandran et al., 2015; Van der Pol and Oliehoek, 2016), and thus

require the agent to find a trade-off between several antagonistic factors.

The poor scalability of classical methods (especially tabular methods) forces many works to

limit their experiments to the control of only a single intersection (e.g. Thorpe, 1998). To avoid

scalability issues, many approaches instead tackle the control problem by means of Multi-Agent

Reinforcement Learning (MARL). MARL considers a number of agents that can each control a

small part of an environment. In a traffic light environment, one agent often controls only a single

intersection, mostly based on some local observation of the traffic state at the the respective

intersection and at neighbouring intersections (e.g. Richter et al., 2006; Arel et al., 2010; Liu et al.,

2017). In a simple setting, an agent learns to control his intersection without being aware of other

agents (e.g. Richter et al., 2006; Arel et al., 2010). Reward functions of the individual agents can

either be based on local measures (e.g. Arel et al., 2010; El-Tantawy et al., 2013; Van der Pol and

Oliehoek, 2016) or the agents can share one global function, which encourages cooperation (e.g.

Liu et al., 2017; Zhang et al., 2018). As control decisions of individual agents can strongly influence

the reward of others, a better solution may be found through explicit coordination of the agents.

This can be achieved by means of coordination-graphs and game-theoretic algorithms such as

max-plus (Kuyer et al., 2008; Bakker et al., 2010; Medina and Benekohal, 2012). The max-plus

algorithm is used to choose a joint action by iterative negotiation between the agents.

To the best of our knowledge, there has so far been no real-world implementation of a full

RL system for traffic light control. This can be explained by the poor sample efficiency and

safety issues (see section 4.2). Experiments strongly differ in the realism of the simulation. An

important factor in the realism of simulations is the used traffic simulator (see section 3.5).

Macroscopic simulators (e.g. in Wiering, 2000; Richter et al., 2006) do not provide the same

realism as microscopic simulators (e.g. in Casas, 2017; Mousavi et al., 2017) but are superior in

terms of simulation time. Whereas most models rely on generic road networks such as arterial

roads (e.g. Medina and Benekohal, 2012) or regular grids (e.g. Richter et al., 2006; Liu et al.,

2017) as an environment, some publications consider real-world examples such as small districts

of cities like Bangalore (Prabuchandran et al., 2015), Toronto (El-Tantawy et al., 2013), Dublin

(Salkham et al., 2008) or Barcelona (Casas, 2017). Unfortunately, many publications are unclear

about their employed assumptions for the traffic model. Simplifications like vehicles that only

drive straight and never turn (Mousavi et al., 2017) are not uncommon and are often not clearly

stated. The lack of a common benchmark makes the comparison of different approaches almost

impossible. A notable exception provides Vinitsky et al., 2018 that, among other environments

that focus more on autonomous vehicles, proposes a benchmark grid-environment (often called

Manhattan) and allows the comparison of RL traffic light controllers. Vehicles in this environment

always follow the road that they are on and never turn. Roads have only one lane and traffic

lights therefore only need two distinct phases (East-West green and North-South green). When

leaving the simulation at the end of the respective street, they immediately reappear at the

beginning of the road, resulting in a constant number of vehicles on every road.

The diversity of environments in different publications results in a lack of comparability. Many

works therefore study how their approach compares to traditional traffic control methods (see

section 3.4); however, as most traditional methods do not have an open-source implementation,

many authors implement their own algorithm that may or may not correspond to the actual

control methods, they try to compete with (e.g. Salkham et al., 2008; Prabuchandran et al., 2015;

65

4. Deep Reinforcement Learning for Urban Traffic Light Control

Mousavi et al., 2017). Most of these works report to significantly outperform traditional control

methods in a range of experiments. Other publications compare the results of two RL algorithms

in their own environment (e.g. Richter et al., 2006; Liu et al., 2017; Casas, 2017), or even show

the improvement of their methods over a completely random policy (e.g. Casas, 2017). Despite

the lack of comparability and the questionable realism of implementations of traditional control

methods, authors generally consent on the great potential of RL control methods and superior

performance compared to other approaches.

4.4. A Traffic Light Control MDP
Markov Decision Processes (MDPs) formalise environments in that an agent can infer some

observation of the state of the system and execute actions according to its policy to obtain a

scalar reward (see section 2.2). In order to characterise the traffic MDP that will be used in this

work, we therefore have to define observation- and action-spaces as well as a reward function.

In this thesis we will not explicitly address the issues of partial observability. The policy π and

the action at at time t thus only depend on the current observation ot and not on the history ht
of previous observations and actions (compare to the general POMDP setting in section 2.2):

at ∼ π(ot). (4.1)

Instead, we will try to implement the information of previous observations and action implicitly

into the current observation.

4.4.1. Observations
The observation-space of the agent may generally consist of everything that the agent can

measure and is thus defined by the implemented sensory hardware of the traffic system. As

formerly discussed, this thesis investigates the benefits of rich information about the current

state of the traffic system, that can be obtained through emerging V2I communication interfaces

(see section 3.6). We thus need to compare the performance of the policies of two different

agents: One having very limited access to the current traffic state— we will call this the solitary
agent — and one that features information of the current state of individual vehicles — the

communicative agent. This distinction can be implemented through two different observation-
spaces.

The Solitary Agent
We will here assume that the agent can always access all signals that are internal to the controlled

traffic lights. In particular, a traffic light should always be able to infer which phase it is currently

showing. As our traffic controller centrally defines the actions of all controlled traffic lights, we

have to assume an existing communication infrastructure that connects all controlled traffic

lights to a central server.

In order to be fed to an NN, the available traffic information has to be encoded as a fixed-length,

real-valued vector. Figure 4.1 shows a time trajectory of the observation-vector for a solitary

agent that controls a single intersection with two different phases. The current phase of every

intersection can be described by a one-hot phase vector sphase (e.g., if the phase scheme consists
of four different options as in figure 3.2, the vector is four-dimensional). As this vector can

66

4.4. A Traffic Light Control MDP

Figure 4.1.: Example trajectory of the observation-vector of the solitary agent for a single

intersection with only two phases. The phase and the period vector encode the

current phase of the intersection; the time component shows the passed time since

the last change; the trace vector gives some notion about the recent history of the

phases.

not encode whether the traffic light currently shows the green-phase or is in an intergreen

period (see figure 3.1), a second, three-dimensional one-hot period vector shows if the traffic light
currently is in the green period (sgreen), the amber period (samber) or the all red period (sall red).

During the amber period, the phase vector encodes the phase that is currently showing the

amber signal, and during the all red phase, it encodes the next scheduled green-phase. The state

also contains a temporal element stime that denotes the time since the last change in the traffic

period. It thus provides explicit timing information which, for example, may help to properly

time two adjacent intersections to create a green wave.

In order to have some notion of the history of former phases, the observation features a trace
vector strace that is implemented as a leaky integrator of the respective phase signal:

C · ds
tracei

dt
= −s

tracei

R
+ sphasei · sgreen, (4.2)

where i identifies the respective phase and R and C are parameters of the integrator that define

the shape of the signal. As the trace increases for an active phase and slowly decays for an

inactive phase, it conveys some information of the amount of time that the respective phase was

recently shown. Other publications choose to include the elapsed time since a particular phase

has been shown (e.g. Prabuchandran et al., 2015), but we found the trace to be more informative

as it conveys information about how long the last green phase might have lasted. Including both

measures did not improve the results of our experiments.

67

4. Deep Reinforcement Learning for Urban Traffic Light Control

Note that, even though the history is partly encoded in the traces, it would certainly be possible

to infer more information when considering the agent’s entire trajectory of observations and

actions. TheMarkov assumption (see section 2.2) is therefore not fulfilled. In amore sophisticated

approach, we could, for example, consider implementing the full history by using a Recurrent

Neural Network (RNN), which is often used to infer the hidden state for time-series data in

Hidden Markov Models.

Table 4.2 shows a summary of the observation-space of the solitary agent and calculates its

dimensionality, whereM denotes the number of controlled intersections, andNi denotes the

number of possible phases of intersection i.

Feature Description Dimensions
phase the current phase of all traffic lights

M∑
i=1

Ni

period the current period of all traffic lights 3M

time the time passed since the last change in period M

trace shows how much each phase was shown lately

M∑
i=1

Ni

2
M∑
i=1

Ni + 4M

Table 4.2.: Summary of the observation-space of the solitary agent and a calculation of its

dimensionality. M here denotes the number of intersections that the agent controls

andNi is the number of distinct phases that can be shown at the intersection i.

The Communicative Agent
In order to model the availability of a V2I interface, via that vehicles can send state-information

to the traffic infrastructure, we enhance the observation-space by information about the position

and velocity of individual vehicles. The position can here be described by the road that the car is

on, the position along that road and the lane that it is currently occupying. The velocity is the

rate of change of the position along the current road.

As we need a fixed-size vector as an input to the NN, it is not clear how to handle the varying

number of vehicles that navigate the traffic scenario. A possible approach would be to transform

the knowledge about individual vehicles into some statistics of fixed length, such as queue size

on particular lanes (as in El-Tantawy and Abdulhai, 2010) or vehicle densities in particular road

sections. However, this approach could be limiting to the expressiveness of the observation.

Another approach would be to introduce some NN architecture that can handle the variable

length of observation, such as a Convolutional Neural Network (CNN) which can reduce a

variable-length vector to a fixed-length through Pooling operations (as in Young et al., 2017).

Here we will take a simplistic approach in that the traffic system can communicate with up

to K vehicles on every afferent road of every intersection. Figure 4.2 shows this for a single

intersection andK = 2, where blue vehicles are observed by the traffic infrastructure and grey

ones are not. If more than K vehicles are on a road, only the K vehicles that are closest to

the intersection will be explicitly observed. Vice versa, if fewer thanK vehicles are on a road,

the missing entries in the observation-vector are filled with zeros. In order to, at least, partly

account for the not explicitly observed vehicles, the observation-vector also features the number

of vehicles on a particular road and their average velocity for each of the roads in the simulation.

68

4.4. A Traffic Light Control MDP

Figure 4.2.: Observation-space of the communicative agent. Here, the first two vehicles, shown

in blue, on every road are considered in the agent’s observation-space. If fewer than

two vehicles are on a road, the missing vector elements are filled with zeros. To at

least partly account for the remaining vehicles, the observation-space also features

the number of vehicles and the average velocity for each of the roads.

The transmitted information is deliberately limited to the position and velocity, which can

always be known to the vehicle, even though other measures could eventually enable more

informed control decisions. In particular, route information or the next turn intention might

strongly benefit the performance of a RL agent. However, these measures are internal to the

driver and are not always known to the vehicle. There are many other features that a vehicle

could transmit, but we do not consider here. It could, for example, infer some statistical data

such as the expected route (e.g. if the current route matches the typical trajectory from the

driver’s workplace to his/her home, the vehicle could anticipate the next turn) or the driver’s

temperament. In an early approach, we used an observation-space that consisted only of the

number of vehicles on every lane, the average velocity of vehicles on every lane and the distance

between the closest vehicle and the intersection for every lane. Even though the agent was still

able to learn a reasonable control policy, the final performance was significantly worse than the

one of the formerly described agent. Another approach, that only featured the positions and

velocities of the observed vehicles but not the statistical data of each of the roads, also led to

decreased performance, especially for high demand scenarios.

Note that we do not explicitly model the V2I communication but assume the knowledge about

individual vehicles to be available to the agent at all times. In a more sophisticated approach,

we could model the communication with a conventional simulator. However, since the latency

of V2I communication (on the order of only one millisecond for 5G) is significantly shorter than

the timestep of our traffic MDP (one second), we would expect the effects of a more realistic

communication protocol on the results of our experiments to be negligible. For controllers that

69

4. Deep Reinforcement Learning for Urban Traffic Light Control

need faster feedback (such as for collective breaking behaviour in platoons), this assumption

should be reconsidered.

Within our simulation, the current traffic phases, alongside the position, velocity and the

route of each vehicle, exhaustively describe the state of the traffic system. Even though the

communicative agent might still obtain additional knowledge by considering its entire history, the

current observation captures the true state of the POMDP significantly better than in the solitary

case. The Markov assumption may therefore be considered to be approximately satisfied.

Table 4.3 shows a summary of the observation-space of the solitary agent and calculates its

dimensionality, whereM denotes the number of intersections that the agent controls,Ni is the

number of distinct phases that can be shown at the intersection i, K is the number of observed

vehicles per road and Li is the number of afferent roads, leading up to intersection i.

Feature Description Dimensions
phase the current phase of all traffic lights

M∑
i=1

Ni

period the current period of all traffic lights 3M

time the time passed since the last change in period M

trace shows how much each phase was shown lately

M∑
i=1

Ni

position position along the current road of all observed vehicles K
M∑
i=1

Li

lane occupied lane of the current road of all observed vehicles K
M∑
i=1

Li

velocity velocity along the current road of all observed vehicles K
M∑
i=1

Li

road the current road of all observed vehicles K
M∑
i=1

Li

road velocities average velocity for every road in the simulation E

road occupancy number of vehicles for every road in the simulation E
M∑
i=1

2Ni + 4KLi + 4M + 2E

Table 4.3.: Summary of the observation-space of the communicative agent and a calculation of its

dimensionality. M here denotes the number of intersections that the agent controls,

Ni is the number of distinct phases that can be shown at the intersection i,K is the
number of observed vehicles per road Li is the number of afferent roads, leading up
to intersection i and E is the number of interconnecting roads in the simulation.

Note that neither of the agents uses measurements of inductive loop detectors, even though

especially the solitary agent might significantly increase its performance through the utilisation of

this partial traffic information. The reason for that is that the deployment of loop detectors again

results in unclear design decisions. In particular, the distance to the intersection and the number

of installed detectors per lane can strongly influence the resulting policy. Furthermore, in all but

one of our experiments, the traffic demand does not vary over the course of the experiment,

which strongly alleviates the need for loop detectors. The agent thus implicitly incorporates

information on the arrival statistics of vehicles. Another way to look at the experimental setting

would, therefore, be that some sensors (e.g. loop detectors) measure the traffic load and the

traffic server selects the RL agent that matches this particular demand.

70

4.4. A Traffic Light Control MDP

Figure 4.3.: Action-space of the agent for a single intersection. The policy outputs a discrete

distribution over the available phase options and a Gaussian distribution over the

duration of the active phase. For eight phase options, the resulting action-space is ten-

dimensional (mean and standard deviation of the Gaussian and eight discrete phase

probabilities). For more than one traffic light, the dimensionality of the action-space

grows linearly.

4.4.2. Control Actions
As already discussed in section 4.2, the design of the action-space of a traffic agent is no trivial

task as it strongly influences the speed of convergence of the RL algorithm as well as the diversity

of behaviours that the agent may exhibit. Some publications limit the action-space to control

only the phase split (e.g. Casas, 2017). Such a narrow framing of the control problem can

result in fast convergence, but it is unclear if the limited range of behaviours that this policy can

encompass may navigate the traffic as precisely as a more general policy. Another approach

decides in fixed time-intervals, which phase to display next (e.g. Richter et al., 2006). The problem

with this action-space is that exploratory actions immediately let the intersection undergo an

intergreen period. Most works alleviate this problem by using a relatively long time interval in

between actions, again limiting the range of different behaviours that the policy can exhibit, or

by neglecting intergreen periods in the simulation.

We here try to formulate the action-space to be able to implement a fairly wide variety of

different strategies. For every controlled intersection, our policy outputs:

• A discrete distribution over the next phase options. The available phases consist of all
options of the opposing streets approach and the single street approach (see figure 3.2),

resulting in eight different phases. All phase options consist of only compatible streams,

which ensures safety but slightly constrains the range of possible signalling strategies.

• A continuous distribution over the full duration of the active phase. The phase duration
can vary between 5 seconds and 100 seconds. The lower limit here ensures that at least

one of the waiting vehicles may pass the intersection during each phase. The upper

limit constrains the time that a phase is usually shown, avoiding unnecessary green-idling

(granting the right of way to approaches without any vehicles waiting). Note however that

the agent may keep on choosing the current phase (the discrete action) to further increase

the phase time.

Figure 4.3 visualises the action space. This action-space can exhibit a wide variety of different

behaviours and also avoids the described problem of exploration, by individually letting the

agent learn to control the phase and the phase duration. Note that this framing of the traffic

control problem requires an agent that can simultaneously handle discrete and continuous

action dimensions. To the best of our knowledge, we are the first ones to use this action-space

71

4. Deep Reinforcement Learning for Urban Traffic Light Control

to control traffic and among the firsts to consider mixed discrete and continuous action-spaces.

We here let the agent choose from a fixed set of phases that consists of all options of the

opposing streets approach and the single street approach (see figure 3.2). An alternative

approach would be to choose every signal individually, resulting in an even broader policy.

However, allowing antagonistic streams to simultaneously obtain the right of way may result in

accidents as a consequence of exploratory actions. In contrast, the limitation to phases that give

simultaneous right of way only to compatible streams strongly alleviates the risks of exploration.

In an early approach, we also tried to decide the next phase in every decision step. However, in

our experiment, this led to slower convergence than the aforementioned approach and inferior

final performances. We therefore decided to abandon this approach.

Switching the phase lets the traffic light undergo the intergreen period, first showing an amber

signal and then the all red signal. The length of intergreen periods is designed to ensure safety

and cannot be altered by the agent. In the case that the agent switches between phases that

contain some identical streams, those streams do not have to undergo an intergreen period (e.g.

if it switches from the northern single street to the north-south opposing streets left turn, the

northern left turn can simply retain its right of way).

4.4.3. Rewards
Finally, we have to define a reward signal that translates our qualitative goals for the traffic

system into a quantitative measure that RL algorithms can optimise. In games and other generic

environments, the design of the reward-function is straightforward as the goals are clearly

defined. In the real world, however, goals can be ambiguous, and choosing a performance

measure is less intuitive than one might imagine. For example, while in most arcade games a

reward signal is readily available in form of the game-score (Mnih et al., 2015), an autonomous car

agent needs to handle a plethora of different goals; some of which are not easily quantified, and

need to implement complex concepts such as morality (e.g. the infamous dilemma of deciding

whether to avoid a playing child, that suddenly enters the road, by steering into the opposing

traffic) or fairness (e.g. the question of how much diminished individual performance a vehicle

should accept in order to increase the systems gross performance).

That being said, an exhaustive analysis of the goals of traffic systems, including a discussion

of factors like morality, fairness, safety, efficiency and many more, is beyond the scope of this

work. Most RL approaches, as well as most traditional control strategies, concentrate on only

one performance measure, such as velocity or delay (see section 4.3). Some approaches also

combine several performance measures by using a weighted combination of them (e.g. Khamis

et al., 2012).

For the most part, we will here use only the average velocity of all vehicles as a reward function.

We will constrain all rewards to values between zero and one. The velocity is therefore divided by

the respective speed limits. In a later experiment, we will take a closer look at the reward function

and consider multiple objectives through rewarding the agent by a weighted combination of:

• the average velocity of all vehicles divided by the respective speed limit

• the flow rate (proportion of moving vehicles)

• the total CO2 emissions in the controlled traffic network; normalised between 0 and 1

• the average quadratic proportion of time spent waiting within the last 100 seconds, which

loosely corresponds to the average driver patience (Liu et al., 2017).

72

4.5. Agent 4D7

Even though these measures might be strongly correlated (e.g. the flow rate is the average over

the binarised velocity), we hope for increased performance in at least some of the performance

measures, through the application of a combined reward function.

Note that the presence of a particular reward signal requires the availability of corresponding

sensory infrastructure. In particular, our employed rewards would need to be measured by

the individual vehicles and transmitted to a central server that runs the RL algorithm. In the

setting of the communicative agent, this does not pose a problem since the reward can easily be

transmitted together with the observation. For the solitary agent, however, the availability of

the reward to the RL algorithm is unrealistic. Even though we might infer the average velocity

throughmeasurements from inductive loop sensors, the resulting reward would be an inaccurate,

time-delayed version of the actual velocity, which might slow down convergence. Nevertheless,

for this work, we will assume the full reward to be available in both the communicative as well as

the solitary agent. This could, for instance, correspond to a setting in that the solitary RL agent is

trained in simulation and, after convergence, is deployed to a real traffic system. The agent then

cannot keep on learning after deployment. The communicative agent, on the other hand, could

simply learn a policy from scratch, using real-world experience or it could be trained first in a

simulation and then keep on learning after deployment.

4.5. Agent 4D7
Having discussed the traffic control MDP, we will now explain the algorithm that is used to

learn a traffic light control policy in order to optimise the obtained rewards. As has become

apparent in chapter 2, the space of available algorithms is large and versatile. In this work, as

the title suggests, we intend to use a modern Deep Reinforcement Learning approach. The

predominantly used algorithm throughout DRL literature in general, and approaches towards

intelligent traffic infrastructure control in particular, is the DQL algorithm (e.g. Van der Pol and

Oliehoek, 2016; Mousavi et al., 2017; Liu et al., 2017; Zhang et al., 2018).

As discussed in section 4.4.2, we deal with an action-space that consists of a number of

discrete phase options and a continuous phase time for every controlled intersection. The DQL

algorithm can only deal with continuous action-spaces by casting them into a finite number

of discrete values. This not only constrains the expressiveness of the actions but may also

slow convergence. Furthermore, jointly choosing the executed actions of several intersections

admits a combinatorial number of distinct options to choose from. The number of predicted

action-values and so the number of output nodes of the value-function thus grows exponentially

with the number of controlled intersections. The DQL algorithm is therefore not well suited to

learn the control of the MDP presented in section 4.4.

Apart from being able to handle the partly continuous, partly discrete, combinatorial ac-

tion-space, the employed algorithm is required to be able to make use of off-policy data (see

section 2.3). Off-policy algorithms have the advantage of being capable of learning from fewer

environment-interactions than on-policy algorithms as they can reuse older transitions from a

replay buffer. In a real-world traffic scenario, this is of crucial importance since experience cannot

be collected faster than real-time and the RL agent is required to show reasonable behaviour

as soon as possible. For simulated environments, good sample-efficiency is still important. In

particular, the utilisation of microscopic traffic models (see section 3.5) makes the collection of

experience relatively slow. Even in a simulated environment, algorithms that need a large number

of environment-interactions therefore may take significantly longer than more sample-efficient

73

4. Deep Reinforcement Learning for Urban Traffic Light Control

Figure 4.4.: Full agent-environment interaction loop for a traffic setting of two connected

intersections with four distinct phase options each. The policy network computes

a probability distribution over actions, based on the agent’s observation. In the

reparameterisation-block, a concrete action is sampled, which is then executed in the

environment. The sampled action and the observation are used by two action-value

functions to predict two probability distributions over action-values. The predicted

action-value function can then be used to optimise the policy. The two action-value

functions can be learned with the DQL algorithm.

ones. The necessity of an off-policy algorithm rules out many candidates such as A3C and PPO.

In the following, we will explain the algorithm that is used in this work. In addition, we also

explain the variants that we tried out but found to show inferior performance in our experiments.

4.5.1. Architecture
The RL algorithm that we will use throughout this work is based on DDPG (see section 2.7.1),

but adopts many ideas of the presented improvements (see section 2.7.3), as well as of the SAC

algorithm (see section 2.7.4). The only publication that we are aware of that is using DDPG for

traffic infrastructure control is Casas, 2017, which uses the continuous policy to centrally control

the phase splits of several intersections. Figure 4.4 shows the full agent-environment interaction

loop for a traffic setting of two connected intersections with four distinct phase options each

(note that actually in all our experiments we will use eight different phase options as depicted in

figure 4.3).

Actor
In each timestep, the agent obtains an observation of the environment and outputs an action that

consists of the next phase and the duration of the current phase for all controlled intersections

(see section 4.4.2). The policy πθ(ot) is implemented as a feed-forward NN (see section 2.4.1) with

74

4.5. Agent 4D7

the parameter set θ. In every timestep, it outputs a discrete distribution over phase options (the

probability of choosing each phase) and a continuous distribution over the phase duration (the

mean and standard deviation of a Gaussian distribution; the standard deviation is constrained to

a reasonable interval). Note that the number of output dimension of the policy grows linearly with

the number of controlled intersections (the number of outputs for intersections with eight phase

options each is 10 ·M whereM is the number of controlled intersections). In order to sample a

discrete and a continuous action for each intersection, we need to apply the Gumbel-Softmax

trick and the Gaussian reparameterisation trick, respectively (see section 2.7.2). This approach

is similar to the one presented in Mordatch and Abbeel, 2017. Recall that directly sampling

from the respective distributions would prevent gradient-based optimisation algorithms like

Backpropagation (see section 2.4.2) to work properly. We thus obtain an action-vector that

features a one-hot vector which selects one discrete phase option for each intersection and a

continuous phase duration for each intersection. The sampled action can then be applied to

the traffic lights in the environment. Note that we do not assume the actions to be selected

deterministically (as in DDPG) but follow the approach of SAC of a stochastic policy.

Our algorithm can freely choose the distribution of both the discrete and the continuous

actions. In order to not prematurely converge to a policy with very low entropy, we add a

negative entropy term to the cost function of the policy. The policy is therefore encouraged to

employ a high degree of randomness, which leads to more exploratory actions and thus, faster

convergence. Another way to look at this is that the policy is trained to imitate the softmax

distribution over the values of the action-value function (see section 2.7.4). In Haarnoja et al.,

2018b, where this idea was proposed, the authors claimed that the scale of the rewards is the

only parameter of their algorithm that needs to be carefully tuned. This makes a lot of sense

since the softmax over only small values results in a relatively uniform distribution, whereas the

softmax over values that differ strongly from another is close to deterministic. We here choose

to scale the entropy term instead of the rewards since we need our reward function to admit

clear upper and lower bounds (because we use a categorical action-value distribution as we

will see in the next section). As our experiments showed that the appropriate entropy scaling

factors of the discrete and of the continuous actions do not necessarily coincide, we introduce

two additional parameters εdisc and εcont to scale the two respective entropies. The loss function

for learning the policy-NN therefore amounts to:

Jπ = −εdisc · Hdisc
(
πθ(o)

)
− εcont · Hcont

(
πθ(o)

)
− Q̂ω(a ∼ πθ(o, o), (4.3)

whereHdisc denotes the sum over the respective Shannon entropies of each of the categorical
distributions over discrete actions andHcont denotes the sum over the differential entropies of
each of the continuous Gaussian distributions.

The two entropy parameters turn out to require intricate, iterative tuning. A value that is too

low results in premature convergence to an almost deterministic policy, which no longer explores

other strategies. A high value results in highly random policies, which can rarely match the final

performance of solutions with lower entropy. The selected values for εdisc and εcont furthermore

depend on the respective experiment. Another option is to continuously anneal the two values

over the course of learning instead of carefully choosing a fixed value. An initially high value

ensures appropriate exploration at the beginning of learning, and the gradual decay towards

smaller values lets the policy slowly reduce the amount of exploration and start to exploit what

has already been learned.

75

4. Deep Reinforcement Learning for Urban Traffic Light Control

Critic
The central idea to DDPG is to learn an action-value function that maps from an observation

and an action to the action-value, and to use the gradient of this estimation to optimise the

policy (see section 2.7.1 for more detail). In order to learn the value-function and ultimately the

policy, the sampled action together with the observation is thus fed to another feed-forward NN

that approximates the action-value function. In fact, instead of using a vector of the action and

the raw observation, we preprocess the observation by a third NN, in order to obtain a more

high-level representation (see figure 4.5). We denote the parameters of the action-value NN,

including the preprocessing of the observation by ω. The value-NN then outputs a distribution

over the action-value, as suggested in Barth-Maron et al., 2018.

The action-value distribution is implemented as a categorical distribution that predicts the

probability of the action-value to fall in a particular, discrete bin. We therefore have to define

a minimal and maximal value of the action-value distribution as well as a number of discrete

bins. The used loss function is the Kl-Divergence of the old action-value distribution and the new

distribution, which is obtained by projecting the obtained reward on the predicted distribution of

the subsequent timestep. This can be understood as the distributional equivalent of minimising

the Mean Squared TD-error. Projecting the obtained reward on the bootstrapped distribution can

be done by simply moving every probability mass of the categorical distribution by the reward:

mass(Y i) =
∑
j

mass(Q̂
j
) if (r + γQ̂

j
= Y i), (4.4)

where Q̂
j
denotes the value of the jth bin of the categorical distribution,mass(Q̂

j
) denotes the

probability mass of the jth bin and Y i
denotes the ith bin of the projected distribution. Note that,

in most cases, the projected value will not fall exactly on the value of a bin so that the probability

mass has to be distributed accordingly (e.g. if the projection r + γQ̂
j
ends up exactly between

the values of two bins, both bins should get half of the mass). Furthermore, the outermost bins

will be accredited all mass that would be projected outside the boundaries of the categorical

distribution.

Barth-Maron et al., 2018 also proposed to use n-step bootstrapping for learning the action-

value function. Even though this makes the algorithm on-policy and therefore technically

prohibits the use of a replay buffer, we observed that for small n ≤ 5, n-step bootstrapping

strongly improved convergence speed. As suggested in Mnih et al., 2015, we use target networks

for the policy- as well as the value network (see section 2.5). This helps to mitigate the bias due to

the correlation between the two action-values in the Bellman equation (equation 2.12). We also

adopt the idea of Fujimoto et al., 2018, to use two, separately learned action-value functions and

use the one that predicts the lower action-value in the Bellman update. This helps to overcome

the maximisation bias and thus stabilises learning (see section 2.7.3). To update the parameters,

we always use the predicted action-value function of the same NN, as was suggested in Fujimoto

et al., 2018. However, using the smaller action-value function to update the policy parameters,

as in Haarnoja et al., 2018a, turned out to work equally well. The loss of the action-value function

results to:

JQ = min
ω=ω1,ω2

DKL

(
Y
∣∣∣∣ Q̂ω

(
ot, at

))
,

where Y = Γ
(N−1∑
n=0

γnri+n, Q̂ω′(ot+N , a ∼ πθ′(ot+N)
))
,

(4.5)

76

4.5. Agent 4D7

Figure 4.5.: Neural Network architecture of the learning algorithm. The policy network consists

of three hidden layers with 4096, 2048 and 1024 nodes, respectively. Each of the two

action-value function uses one layer of 4096 nodes for preprocessing the observation

and another two layers of 2048 and 1024 nodes to compute the action-values. Note

that we use two copies of the depicted network: one that is learned and the target

network.

where ω1 and ω2 denote the parameters of the two action-value functions, ω
′
denotes the param-

eters of the respective target network, θ′ denotes the parameters of the target policy network, Γ

denotes the projection operation (equation 4.4) andminω=ω1,ω2
selects the distribution with the

smaller mean value.

Being a microscopic simulator (see section 3.5), SUMO can be fairly slow when simulating

the traffic network, particularly if many vehicles are considered. In order to speed up learning

in terms of wall-clock time, we use a distributed sampling approach that collects experience

from various environments in parallel (these can be simulated on different CPU cores). Other

publications such as Barth-Maron et al., 2018 also take this distributed approach. Note that,

other than Popov et al., 2017, we use multiple workers for the collection of experience but only

one worker to compute gradients and optimise the parameters of the policy and the action-value

function. Figure 4.5 depicts the used NN architecture, showing the number of neurons of each

fully-connected layer (light blue) and all used activation functions (dark blue). Note that we do

not show the target networks (the target networks are a full copy of the depicted networks).

Apart from the discussed adaptions to the original DDPG algorithm, we also tried out other

reported improvements from section 2.7.3. The idea of Popov et al., 2017, to perform several

steps of gradient descent for every interaction with the environment did only result in slower

convergence in our experiments. The attempt to use a prioritised replay buffer, as in Barth-Maron

et al., 2018, to sample transitions that are not yet well approximated by the action-value function

approximator did not result in faster convergence and sometimes even led to diminished

77

4. Deep Reinforcement Learning for Urban Traffic Light Control

performance. Adding zero-mean Gaussian noise to the bootstrapped action-values as in Fujimoto

et al., 2018 did not show any effect in our experiments, and neither did the idea to update the

policy parameters less frequently than the parameters of the action-value function (also proposed

in Fujimoto et al., 2018).

Following the unspoken naming convention in the RL field of simply denoting some of the used

concepts so that the first letters result in a more or less meaningful word (such as Actor-Critic

using Knoecker-Factored Trust Region→ ACKTR— pronounced actor— or Distributed Distri-
butional Deterministic Policy Gradient→ D4PG), we will name this algorithm ’Deep Distributed
Distributional Discrete-Continuous Entropy Regularised N-Step Policy Gradients’. Successively

shortening this unwieldy name we reach at DDDDCERNSPG→ 4DCERNSPG→ 4D7 (accounting
for 4 D’s and 7 other letters). Appendix A shows the full Agent4D7 algorithm.

4.5.2. Learning and Optimisation
We optimise all sets of parameters θ, ω1 and ω2 with an ADAM optimiser (see section 2.4.2). Due

to recent concerns on the ability of ADAM to reliably find a good solution (Wilson et al., 2017),

we also experimented with other optimisers such as SGD with momentum and the trust-region

approach of ACKTR (Wu et al., 2017b). However, neither of these approaches showed superior

final performance in our experiments and both converged significantly slower than the one using

ADAM. All parameters are initialised using Kaiming initialisation (He et al., 2015b). The policy and

action-value function NNs are trained with the two learning rates απ and αQ, respectively.

Finding an adequate learning rate for the optimiser of the policy turns out to be tricky. Low

learning rates result in slow convergence whereas high ones show quick progress in the beginning

but sometimes lead to a sudden, steep decrease in performance of the policy (often referred

to as policy-breaking). This different learning behaviour was partly due to different rates of

change of the discrete policy, depending on how well our action-value-NN approximates the

true action-value function. In order to avoid this we implemented an adaptive learning rate

that uses a simple proportional controller to keep the KL-Divergence between the policy before

and the one after the update of the parameters θ on a predefined level. More precisely, we

used the symmetricD2(A,B)metric that is the sum of the two KL-DivergencesDKL(A||B) and

DKL(B||A), where A and B are the two distributions. The learning rate can only be adapted

within reasonable bounds. Note that the second-order approximation of the ADAM optimiser,

combined with the adaption of the learning rate to reach a desired level of change in the policy,

may be considered a very coarse approximation to a trust-region approach (see section 2.6.3).

For optimising the action-value function, we simply use a fixed learning rate.

Appendix B.1 shows all parameter values of the learning algorithm that we used during our

experiments.

4.6. Real-World RL Traffic Control
As a final remark in this chapter, we want to comment on the possibility of deploying the RL

traffic controller in a real-world traffic network.

Due to the safety problems discussed in section 4.2, there are little to no instances of an RL

agent being left in charge of the control of any safety-relevant system. The control of traffic could,

however, very well be among the first domains of widespread deployment of RL agents. This is

because the safety of the traffic system can be enforced easily, by constraining traffic lights to

78

4.6. Real-World RL Traffic Control

admit simultaneous right of way only to compatible streams and to employ appropriate amber-

and all red periods. Safety concerns in the control of traffic lights are therefore less pronounced.

Unfortunately, these safety constraints can not ensure efficient operation of the traffic system.

In fact, the buildup of high congestion through an inefficient traffic policies could ultimately

result in unsafe situations and accidents. In addition, traffic legislators could be unwilling to give

up a working system when the replacing system would need a significant amount of time before

it can efficiently operate the traffic network. These problems may be partially mitigated through

the option of pre-learning a traffic agent in a simulated environment that closely resembles the

true traffic scenario. After convergence in simulation, the system could be deployed to the real

world, where it keeps on learning to further adapt to the traffic network and to mitigate possible

inefficient behaviours that were learned because of inaccuracies or simplifications in the traffic

simulation. An inefficient, initial exploratory phase of the system could thus be avoided.

It is important to note that the continuous adaption of a real-world RL traffic control system is

only realistic for the communicating agent. Through the availability of rich knowledge on the

state of individual vehicles, a meaningful reward function can be designed. The solitary agent, on

the other hand, would have to rely on approximate rewards (e.g. from inductive loop sensors)

which might not be able to give sufficiently rich feedback to learn a good policy. The availability

of a reward function can thus be seen as one of the biggest advantages of V2I communication to

RL approaches to the traffic control problem.

79

5. Experiments and Results
In this chapter, we want to investigate the behaviour and performance of our DRL approach to

traffic light control (presented in chapter 4). To that end, we developed a set of experimental

setups in a simulated environment in that the traffic signalling can be influenced by the RL agent.

In each of these environments, we let an agent learn a traffic control policy, describe its emergent

behaviour and asses its performance. Due to the already widely reported superiority of RL

approaches over traditional control methods (see section 4.3), we do not attempt to exhaustively

compare our algorithm against existing control methods (described in section 3.4). Instead, we

will focus on the comparison of performance and emergent behaviours of agents that employ

the two different observation-spaces (see section 4.4.1), embodying the availability of a V2I

communication interface, or the lack thereof. Through that, we hope to showcase the great

potential of V2I communication to improve the performance of modern traffic systems and the

power of DRL approaches to handle the large, emerging observation-spaces. An exception to

this is the first experimental scenario in that we compare the policies of the DRL agents against

the optimal fixed cycle strategy.

We will first describe the elements of the simulation environment that are common to all

experiments. Subsequently, we will give a detailed description of each experiment, including

the specifics of the respective traffic network and the feature that we hope to showcase. A

figure of the road infrastructure of every scenario can be found in the appendix. Following

the description of each experimental setup, we will present and analyse the obtained results.

Each conducted experiment increases the complexity of the former one. Starting from a single

controlled intersection, we will work our way up to more complex settings that require the

coordination of multiple intersections. Finally, we will briefly discuss the convergence properties

of the learning algorithm.

5.1. Simulation Setup
The conducted experiments are all based on a common traffic framework. The implementation

of our algorithm is written in Python 3.6 (Van Rossum and Drake Jr, 1995). We use SUMO (see

section 3.5.1) as a microscopic simulation software for the traffic system and Flow (see section

3.5.2) as a Python interface that implements the traffic MDP, described in section 4.4. For the

implementation of all Neural Networks (see section 4.5), we use PyTorch (Paszke et al., 2017).

Other frameworks that were heavily made use of include NumPy (Walt et al., 2011), pandas

81

5. Experiments and Results

Figure 5.1.: The traffic network that we use in our simulations. Most experiments use a regular

grid of intersections (not necessarily the depicted number) with interconnecting

roads of six lanes each. Vehicles enter the network on one road and aim to leave it

at another; at each intersection vehicles can go straight or turn left or right to reach

their destination. Each intersection is controlled by a traffic light that can show eight

distinct phases. Taken from SUMO’s GUI.

(Mckinney, 2010), ptan (Lapan, 2018), IPython (Perez and Granger, 2007) and matplotlib (Hunter,

2007).

The traffic network in our simulations consists of a regular, two-dimensional n ×m grid of
intersections as depicted in figure 5.1. The dimensions of the grid vary from one experiment

to the other. Each interconnecting lane has the same length and speed limit. Vehicles can be

situated on one of three lanes per road and direction (six lanes per road), where the leftmost lane

allows only left turns, the middle lane allows only straights and the rightmost lane allows both

right turns and straights (see figure 5.1). Each intersection is actuated by a system of traffic lights

that can show either of the eight phases depicted in figure 3.2, where each phase comprises of

only compatible streams. Note that all streams that originate from the same lane (here this only

concerns the rightmost lane of every road) always have simultaneous right of way; therefore,

streams do not get blocked because another stream, using the same lane, does not have the right

of way (for example, if in some phase we allow right turns but prohibit straights at the rightmost

lane, a vehicle that intends to go straight would block the road for all subsequent vehicles that

want to go right). For the last experiment (section 5.5), we will abandon this generic scenario

and instead simulate the road network of the l’Antigua Esquerra de l’Eixample neighbourhood in

Barcelona.

In each timestep, the RL agent can control the next phase as well as the phase time (within

reasonable boundaries) of each intersection, as described in section 4.4.2. The selection of a

new phase lets the intersection go through an amber and an all red period of predefined lengths,

before the new phase can be shown. The duration of the amber period here approximately

matches the legal requirements. In order to prevent accidents, which force us to reset the

simulation, we here use all red periods that are slightly longer than usual.

Vehicles can enter or leave the traffic network at either of the outermost roads. The generation

of new vehicles is done by one Poisson process for each combination of entry- and exit points.

The total demand in terms of vehicles per hour can be controlled, as well as some biases of the

82

5.1. Simulation Setup

statistics of origin and destination such as the proportion of vehicles that leave the simulation on

the same road that they entered it or the ratio of vertical to horizontal traffic. The lane on which

a new vehicle is spawned is chosen randomly and the initial velocity of all vehicles is predefined.

Note that the assumption of Poisson processes for vehicle generation is a debatable one. In

a Poisson process, the generation of each vehicle is statistically independent of other vehicles.

It generates every sequence of n vehicles in a fixed time-interval with the same probability,

while the number of generated vehicles n is Poisson distributed (Dayan and Abbott, 2005). If

the surroundings of the considered traffic systems can be assumed to consist of long streets

with no traffic lights, vehicles might be dispersed enough to justify the assumption of Poisson

processes. However, in the (maybe more realistic) scenario of the considered system being

surrounded by other actuated intersections, the generation of individual vehicles should be

considered to be correlated to account for the coordinated inlet of dense streams of vehicles at

nearby intersections.

To route each vehicle through the network, we use SUMO’s default routing protocol (see

section 3.5.1), which employs a shortest path algorithm that takes into account the length and

speed limit of the connecting roads as well as their current occupancy. Vehicles are routed once

upon entering the simulation but do not adapt their initial route later on. Note that adaptive

route selection might not be the standard in today’s traffic network but could very well be the

norm in future scenarios that feature V2X communications. The lane-changing behaviour is also

governed by SUMO’s default controller. Vehicles change lanes to reach the required lane for

their next turn and can also adapt to the current traffic by choosing the lane with the shortest

queue or the highest velocity. If a vehicle is not on the correct lane for its next turn but cannot

change the lane because another vehicle is blocking it, both vehicles can adapt their velocities to

allow the former to change lane. This also includes that vehicles may open up a spot in a long

queue to let another vehicle enter the lane. The car-following model uses the Intelligent Driver

Model (IDM) introduced in Treiber et al., 2000. The IDM dynamics are additionally perturbed by

Gaussian acceleration noise as proposed in Wu et al., 2017a. This results in non-deterministic

driving behaviour which more closely matches the real world than a fixed acceleration value.

Real-world traffic systems need to work in continuous time. In theory, the traffic networks

should therefore be simulated continuously and the collected experience should not fall into

individual episodes. However, a poor policy at the beginning of the learning process can result in

strong congestion and deadlocks, which are hard to resolve. Framing the traffic simulation as an

infinite horizon MDP therefore could slow or even prevent the agent from learning an efficient

policy. For our experiments, the environment is therefore simulated for a predefined duration

and is reset to its initial state at the end of each episode. Appendix B.2 shows the values of all

parameters of the traffic environment.

In each experiment, one or several DRL models are trained to control traffic lights. As discussed

in section 4.2, it is often difficult to judge whether a DRL algorithm has converged to the final

solution or if it might further improve at its task. Furthermore, independant runs of the learning

algorithm might yield different solutions, depending on the hyperparameter setting and the

initialisation of the NN parameters. For the here-presented results, each learning process was

run until the performance of the respective policy did no longer change for a significant amount

of time. To mitigate the risk of having found an inferior solution, we ran every learning process

several times, with a varying set of hyperparameters.

The raw data of all figures as well as videos of all experiments are included on the CD.

83

5. Experiments and Results

5.2. Single Intersection
In our first experimental setting, we will treat the easiest possible case of only a single controlled

intersection. Figure C.1 in appendix C.1 shows the road infrastructure.

We will here investigate the performance of the learning traffic agent for a wide spectrum of

different demand settings. The lowest considered demand of 200 vehicles per hour (vehs/h) can

be considered to represent quiet traffic conditions during the early afternoon or on weekends,

whereas the highest demand of 3000 vehs/h represents strongly oversaturated traffic conditions

that might, for example, correspond to a rush hour in a dense city centre. All routes in this

scenario have the same demand, meaning that every incoming vehicle turns left, turns right or

goes straight with the same probability and the expected value of generated vehicles is equal for

every ingoing lane. In addition to a comparison of the performance of the two agents (the solitary

and the communicative agent), in this setting, we will also investigate how well the proposed RL

approach compares to a fixed-cycle strategy.

5.2.1. Fixed-Cycle Strategy
If we assume a fixed phase scheme for the simple case of a single intersection, it is relatively

easy to find a near-optimal signalling strategy. We will therefore compare the RL approach to a

fixed-cycle strategy, which could be found by a traditional strategy such as MOVA (see section 3.4).

Due to the regular inflow statistics on all lanes (the inflow statistics are completely symmetric for

all ingoing lanes), it is obvious that a fixed-cycle controller should give the same phase time to

each of the phases. A traffic controller therefore only has to find an appropriate phase time.

Results
Figure 5.2 shows the measured average velocities of vehicles for different phase times (ranging

from 5 to 100 seconds), different demands (ranging from 200 to 3000 vehs/h) and for the two

different phase schemes of figure 3.2. Each datapoint is the mean of 100 hours of simulated

time which, for our simulation timestep of one second, corresponds to 360,000 datapoints. The

depicted 95% confidence intervals are therefore barely visible. Note that we can only define

phase times that are multiples of the simulation timestep.

Different demand scenarios are depicted in different colours. For each demand scenario, the

average velocity first increases with the phase times, as a higher number of queued vehicles can

pass the intersection in a single green period. The average velocity sharply increases every time

that an additional vehicle can cross the intersection, followed by a slight decrease due to the

fact that green times increase without additional vehicles passing the intersection (this leads

to the zigzag form of the graphs). Each demand scenario shows an individual maximum of the

average velocity. These maxima are reached when the number of vehicles that can cross the

intersection in each phase coincides with the average number of vehicles that queue up at the

respective approach during its red phase. A higher demand naturally results in a longer optimal

phase time. Even longer phase times (than the one of maximal average velocity) result in green

idling, during that the traffic light of an approach continues to show a green light even though

no further vehicles are queued. After the respective maximum, the average velocity therefore

decreases smoothly for each of the demand scenarios.

Solid lines show the results for the single street approach and doted ones for the opposing

streets approach. For scenarios of lower demand, the performance of the two approaches

84

5.2. Single Intersection

20 40 60 80 100
phase times [s]

0

1

2

3

4

5

6

7

8

av
er

ag
e

ve
lo

cit
y

[m
/s

]

demand
200 vehs/h
800 vehs/h
1400 vehs/h
2200 vehs/h

3000 vehs/h
phase scheme
single street
opposing streets

Figure 5.2.: Experimental results of a fixed-cycle strategy that controls the signalling at a single

intersection. Shows the average velocities of vehicles for different phase times,

demands and phase schemes. For higher demands, longer phase times yield better

results. For low demands, both phase schemes show comparable results, whereas

for higher demands, the single street approach outperforms the opposing streets

approach.

appears to be identical. This makes sense since, in both approaches, all streets are given the

same green time within the full cycle. For higher demands, it appears that the single street

approach outperforms the opposing street approach. The reason for this is that in the opposing

streets approach, some vehicles may be on the wrong lane for their next turn and thus block

a lane that has the right of way, while waiting to be allowed to switch lanes (for example if a

vehicle wants to turn left but is on the middle lane it will block the middle lane until it can switch

to the left lane). It may be debatable whether this behaviour is realistic or if drivers would simply

choose another route when they cannot switch lanes.

In the following experiments, we will use the phase times that resulted in the best performance

and compare the results to a policy that is derived by a DRL agent. Note that it is unclear

whether the fixed-cycle controller corresponds to a solution that may be found by an isolated or

a responsive strategy. On the one hand, a responsive strategy might leverage the knowledge of

individual vehicles that cross the inductive loop detectors to adapt its phase times appropriately.

On the other hand, most traditional control strategies use traffic counts only to estimate arrival

statistics but do not respond to the presence of individual vehicles. As the arrival statistics

are constant in our experiments, one could argue that the resulting strategy incorporates

this knowledge implicitly and therefore finds a solution that is comparable to the one that a

responsive traffic controller may employ.

85

5. Experiments and Results

200 800 1400 2200 3000
demand [vehs/h]

2

3

4

5

6

7

8

9

av
er

ag
e

ve
lo

cit
y

[m
/s

]

fixed-cycle
solitary agent

Figure 5.3.: Comparison of the distributions of average velocities of vehicles of the solitary agent

and the fixed-cycle approach for different demands in the single intersection scenario.

For all demand scenarios, the solitary agent appears to find a solution that performs

on par with the fixed-cycle approach.

5.2.2. DRL: Solitary Agent
In the next step, we want to compare the results for the fixed-cycle control strategy to a solution

that is obtained by our DRL agent. The goal of this experiment is to show that our agent can find

a policy that performs on par with the fixed-cycle solution while using the same information.

We here use the solitary agent (see section 4.4.1) as it has no access to information about

individual vehicles. Since the fixed-cycle strategy of the previous section can be considered to be

near-optimal, we do not expect the solitary agent to be able to outperform it.

Results
Figure 5.3 compares the distribution of average velocities of the best fixed-cycle strategy from

the previous experiment to a solution found by the DRL agent. For each demand, the left, darker

distribution corresponds to the best result from figure 5.2 (shown in the same colours). The

right, lighter distribution shows the results of our DRL approach, using the solitary agent. Each

distribution is approximated using 100 data points, where each data point corresponds to the

average velocity of vehicles, measured over the timespan of one hour (each distribution contains

data of 100 hours of simulated time). The dotted lines in the distributions show the respective

medians and the upper and lower quartiles. Note that we scaled all distributions to the same

height for better visibility. The spaces under the curves are therefore not equal.

Most pairs of distributions are relatively similar, which leads us to conclude that, at least for

this simple example, our DRL approach is able to find a solution that is on par with a traditional

control strategy. In the case of the lowest demand (200 vehs/h), the DRL solution, in fact, strongly

outperforms the fixed-cycle strategy. We believe that this is mostly due to the DRL agent’s ability

to employ a sequence of varying phase lengths. For example, if during the red period of a stream,

86

5.2. Single Intersection

an average of 2.5 vehicles queue up at the approach, it may be beneficial to iterate between two

phase-times: one allowing two vehicles to cross and one allowing three vehicles to cross. In this

example, the fixed-cycle strategy would need to select the phase time at which three vehicles can

pass, resulting in some green idling, or else vehicles would keep on queuing up. This advantage

is more pronounced for low demands.

For the case of very low demand (200 vehs/h), the resulting policy non-deterministically

switches between the eight different phase options while using very short phase times. Every

new phase tends to grant the right of way to flows that have gone longest without it. Since

queues build up slowly, activating all streams in the shortest time possible appears to be the

best strategy. For the slightly higher demand (800 vehs/h), the policy converged towards using

only the single street approach in some trails, and ended up using only the opposing streets

approach in other trials. The phase times remain relatively short, but the sequence of phases

appears more deterministic than in the low demand case. This shows that both approaches

(single street and opposing streets) result in similar rewards, but mixing the two tends to yield

inferior performance. For higher demands (1400 to 3000 vehs/h), the resulting policy always

ends up deterministically iterating through the phase options of the single street approach. This

makes a lot of sense since the opposing streets approach has shown to be inferior for the higher

demand setting (see figure 5.2). Phase times increase with higher demands to reduce intergreen

times while avoiding green idling.

Particularly interesting is the emergent behaviour for the case of 3000 vehs/h, as two funda-

mentally different policies appear to result in the same average reward. For some trails, the

agent periodically grants the right of way to all phases of the single street approach. For other

trails, it ended up completely blocking one of the afferent roads. In the blocked road, queues

build up until the entry point so that no further vehicles can enter the road network. On the

one hand, this leads to a fixed number of standing vehicles, which negatively influence the

average velocity. On the other hand, blocking one of the entry points reduces the demand from

3000 vehs/h to merely 2250 vehs/h, allowing the agent to keep the queues at the remaining

three roads relatively short. It is interesting to see that these two policies result in very similar

rewards, making them equally good in the eyes of the agent, whereas a human observer would

probably condemn the latter strategy for being unfair. Even though this behaviour is exploiting

a shortcoming of our simulation and would not be possible in the real world, it shows that we

have to design the reward function with care as the agent might find a way to gain high rewards

by behaving in a way that we may not have anticipated and that might not be desirable. We will

take a closer look on different reward functions in section 5.4.

5.2.3. DRL: Communicative Agent

As a last experiment in the single intersection scenario, we want to compare the performance of

the two different agents (see section 4.4.1) that represent the availability of information about

individual vehicles through V2I communication, or the lack thereof. In addition to the results

of the preceding section, we thus let our communicative agent learn the control of the traffic

system. The agent here can incorporate the knowledge of up to 30 vehicles per incoming road

(120 vehicles per intersection).

87

5. Experiments and Results

500 1000 1500 2000 2500 3000
demand [vehs/h]

0

2

4

6

8

10

12

14

av
er

ag
e

ve
lo

cit
y

[m
/s

]

solitary agent
communicative agent
fixed-cycle

Figure 5.4.: Comparison the average velocities of vehicles for the communicative agent, the

solitary agent and the fixed-cycle strategy for different demands in the single

intersection scenario. The communicative agent reliably outperforms the other

approaches. The advantage of V2I is especially pronounced for lower demands.

Results

Figure 5.4 shows the average velocities of vehicles for different demands. Results are shown

for the fixed cycle approach (see section 5.2.1), the solitary agent (see section 5.2.2) and

the communicative agent. Markers denote the measured average velocities, whereas lines

merely connect the markers. Each data point shows the average velocity of 100 hours of data

(corresponds to 360,000 data points). The depicted 95 % confidence intervals are therefore

barely visible. Note that the fixed cycle approach and the solitary agent each require independent

optimisation for each of the different demands. Every data point of the solitary agent therefore

is obtained with a different, independently trained policy. The communicative agent, on the

other hand, simply uses one model for all different demand settings. Whereas it is trained on

the same demands as the other agent (200, 800, 1400, 2200 and 3000 vehs/h), we chose to

also evaluate the learned model for other demands (400, 600, 1000, 1800 and 2600 vehs/h) and

found it to perform equally well. This shows that the communicative agent is able to efficiently

navigate different demands without explicitly having to estimate traffic statistics. In a real-world

setting, where demands are not steady and hard to quantify accurately, the communicative agent

might therefore outperform the other approaches by an even larger margin, due to its ability to

successfully manage a wide range of different demands with a single model. In section 5.3, we

will further investigate the communicative agent’s ability to adapt to changing demands.

Table 5.1 shows the exact and relative values of the average velocities of all three approaches

for different demands. Comparing the results of the three different approaches, we again

notice that the fixed cycle approach and the solitary agent show comparable performance (see

section 5.2.1). The communicating agent, on the other hand, shows superior performance for

all demands. For the low demand setting, the communicative agent significantly outperforms

the other approaches, whereas, for higher demands, the advantage of communication becomes

negligibly small. The strong advantage for the low demand case results from the strategy of the

88

5.3. Arterial Road

demand fixed-cycle solitary agent communicative agent

200 vehs/h 7.23 m
s

(100 %) 7.95 m
s

(110 %) 12.79 m
s

(177 %)

800 vehs/h 6.41 m
s

(100 %) 6.53 m
s

(102 %) 7.48 m
s

(117 %)

1400 vehs/h 5.55 m
s

(100 %) 5.76 m
s

(104 %) 6.29 m
s

(113 %)

2200 vehs/h 4.29 m
s

(100 %) 4.53 m
s

(106 %) 4.93 m
s

(115 %)

3000 vehs/h 2.64 m
s

(100 %) 2.57 m
s

(97 %) 2.82 m
s

(107 %)

Table 5.1.: Experimental results for the two agents in the single intersection scenario. Shows

the exact and relative values of the average velocities for all three approaches for

different demands.

communicative agent to individually grant the right of way to approaching vehicles. Furthermore,

it can decide to keep a phase when it observes another vehicle that is quickly approaching the

intersection. In contrast, the solitary agent blindly activates phases that have not been shown

for a long time, often granting the right of way to streams with no queued vehicles or forcing a

fast vehicle to break just before the intersection. In settings of higher demand, queues build up

quickly so that switching to a phase that has not been shown for a while almost certainly results

in the reduction of a queue. However, the communicative agent still manages to retain a slight

edge over the other approaches by ending a phase when most lanes of that phase have been

cleared.

5.3. Arterial Road
In this section, we want to investigate the effect of V2I communication in a traffic setting that

requires the coordination of multiple intersections. We here consider an arterial traffic scenario

that consists of a chain of four connected intersections, forming one long, horizontal road which

connects to four shorter, vertical roads. Figure C.3 in appendix C.2 shows the road infrastructure.

The horizontal road in this scenario is considered to be a heavily utilised main road, whereas the

vertical roads are supposed to represent side roads with smaller traffic demand. We therefore

need to change the spawn rates of the Poisson processes to account for increased traffic demand

on the main road and decreased traffic demand on the side roads. To do this, we increase the

rate of vehicles being spawned on routes that originate on the main road or end on the main

road by a factor of five and the rate of vehicles being spawned on the route that both begins and

ends on the main road by a factor of 25. Consequently, many vehicles traverse the entire main

road, a moderate amount of vehicles enter the simulation on the main road but leave it on a

side road or vice versa, and relatively few vehicles both enter and leave the simulation on a side

road. Note that we have to normalise the resulting spawn rates to meet the desired demand.

5.3.1. Steady Demand
For this experiment, we compare the two agents for different demand scenarios, ranging from low

demand (200 vehs/h) to moderately high demand (2000 vehs/h). As the number of intersections

is larger than in the previous experiment, resulting in a larger observation-space, we here reduced

the number of observed vehicles of the communicative agent from 30 to 10 (40 per intersection).

89

5. Experiments and Results

200 500 1000 2000
demand [vehs/h]

0

2

4

6

8

10

12

av
er

ag
e

ve
lo

cit
y

[m
/s

]

solitary agent
communicative agent

Figure 5.5.: Comparison of the average velocities of vehicles for the communicative- and the

solitary agent for different demands in the arterial scenario. The communicative

agent surpasses its solitary counterpart for all demand settings.

Results
Figure 5.5 compares the measured average velocities for the two agents and different demand

scenarios. Each of the bars is obtained by averaging over 100 hours of simulated time. The small

candlewicks depict the 95 % confidence intervals. Note that, just as in the previous experiment,

four different solitary agents were trained — one for each of the four demand scenarios. In

contrast, only one communicative agent was trained in an environment with varying demand

and later evaluated in a fixed-demand scenario.

As in the previous experiment, we observe that the communicative agent reliably outperforms

the solitary agent by a significant margin, where the difference is especially prominent for

scenarios of very low demand. Table 5.2 shows the obtained average velocities of the two agents

and their relative values.

demand solitary agent communicative agent relative value

200 vehs/h 7.76 m
s

12.94 m
s

167 %

500 vehs/h 7.47 m
s

9.96 m
s

133 %

1000 vehs/h 6.06 m
s

7.86 m
s

130 %

2000 vehs/h 3.53 m
s

4.52 m
s

128 %

Table 5.2.: Experimental results for the two agents in the arterial scenario. Shows the exact

and relative values of the average velocities for the two different agents for different

demands.

The performance of the solitary agent barely changes when increasing the demand from 200

to 500 vehs/h, whereas the performance of the communicative agent sharply decreases. For

higher demands, the relative performance of the two agents is relatively stable. In the 200 vehs/h

scenario, the substantial advantage of the communicative agent stems from its ability to react

to individual vehicles by granting the right of way to the respective streams just in time for the

90

5.3. Arterial Road

0

10
20
30
40
50
60
70
80

av
er

ag
e

wa
iti

ng
 ti

m
e

[s
]

(a) Solitary agent.

0

10
20
30
40
50
60
70
80

av
er

ag
e

wa
iti

ng
 ti

m
e

[s
]

(b) Communicative agent.

Figure 5.6.: Average waiting times for every lane in the arterial scenario for the two different

agents and a demand of 200 vehs/h. The communicative agent strongly reduces

waiting times of vehicles that enter or leave the main road.

vehicles to cross the intersection without having to wait. In scenarios of higher demands, the

communicative agent still outperforms the solitary agent through a more intelligent allocation of

green times, based on the number of queued vehicles. However, its advantage decreases for

higher demands.

In contrast to the previous experiment, the inflows here are not symmetric. The learned policy

may therefore also be asymmetric, and the traffic situation in different parts of the simulation

may vary. To investigate these differences, in figure 5.6 we show the average time that a vehicle

spends waiting (at a velocity of less than 1 m
s
) on each lane of the traffic infrastructure in the

200 vehs/h demand scenario for the solitary agent and the communicative agent. Importantly,

we did not explicitly optimise the waiting times but may still use it as a means to evaluate

the behaviour of the two agents, as it strongly correlates with the average velocities. When

comparing the waiting times on individual lanes, we have to bear in mind that the traffic volumes

on the respective lanes strongly differ. For example, a long waiting time on a lane which is barely

ever used can be acceptable, while an intermediate waiting time on a heavily used lane can be

very problematic in the eyes of an agent that optimises average velocity.

Naturally, vehicles do not have to wait on any of the outgoing lanes in our simulation since we

do not consider them to be controlled by traffic lights and vehicles can leave the simulation at any

velocity. Note, of course, that this isolated view of our traffic environment is a simplification of a

real-world traffic scenario, where inflow and outflow is strongly influenced by the surrounding

infrastructure.

The solitary agent (figure 5.6a) grants most of the green time to the straight and right-turn

91

5. Experiments and Results

streams of the main road, resulting in relatively short waiting times on the main road. It creates

green waves so that plateaus of vehicles can traverse the main road without having to stop. In

contrast, streams that enter or leave the main road tend to have to wait a considerable amount

of time at a red light (except for the right turns, leaving the main road). This makes a lot of sense

since the heavily utilised main road has a stronger impact on the average velocity (which is what

the agent tries to optimise) of the system than the quiet side roads.

Comparing the two figures (5.6a and 5.6b), we observe that the communicative agent further

reduces the average waiting times on the main road by a few seconds. However, the more

noticeable change concerns the waiting times for entering or leaving the main road, which are

reduced by up to 90 %. The ability to observe individual vehicles here allows the communicative

agent to let vehicles enter or leave the main road, without interrupting the traffic flow. We

conclude that the advantage of the communicative agent is especially prominent if the scenario

features streams with very low arrival rates, where it can respond efficiently to individual vehicles.

Note that not all lanes show the same decline in average waiting times. In particular, the

rightmost lane of the southern approach of the leftmost intersection appears to benefit very

little from the knowledge of the communicative agent. This shows that the solution that is found

by the DRL agent not necessarily is the optimal one. It is possible that the agent would have

learned to successfully control all approaches if we would not have ended the training process.

Figure C.4 in appendix C.2 shows the waiting times of each lane for the communicative agent

in the 500- and the 1000 vehs/h scenario. For higher demand scenarios, the average waiting

times increase strongly on the lanes that are leaving or entering the main road, whereas the

waiting times on the main road itself are kept low. This shows that the agent prioritises the traffic

on the main road to deal with the increased traffic volume.

5.3.2. Sudden Inflow
In this experiment, we want to investigate the effect of unsteady traffic demands. More precisely,

we want to see how the two agents handle a sudden, unexpected increase in traffic volume. We

simulate the arterial scenario for a total time of two hours, where the first 30 minutes we use a

moderate demand of 1000 vehs/h. We then increase the demand for 30 minutes to 2000 vehs/h

and finally reduce it back to 1000 vehs/h for another hour. This experiment could, for example,

correspond to the heavily increased traffic volume after an important sports event.

Results
Figure 5.7 shows the average velocities of vehicles over the course of the experiment. The

depicted plots show the average values for 100 trails (in total, 200 hours of simulated time for

each agent). To further reduce the noise in the graphs, we smoothed them with a Gaussian

kernel. The depicted bounds represent the 95 % confidence intervals. We here use the same

learned communicative agent as in the previous experiment. For the solitary agent, we use the

best of the four trained models from the last experiment (the model that was trained in the 1000

vehs/h scenario performed best).

As we might expect, the ability of the communicative agent to observe the sudden increase

in traffic volume allows it to reliably outperform the solitary agent. After the demand returns

to the moderate level (1000 vehs/h), the communicative agent recovers quickly and returns to

its former performance after approximately 20 minutes. The solitary agent, on the other hand,

recovers slowly and does not return to its former performance within the remaining hour of

92

5.4. Grid

0 1000 2000 3000 4000 5000 6000 7000
time [s]

0

2

4

6

8

10

ve
lo

cit
y

[m
/s

]

2000 vehs/h1000 vehs/h 1000 vehs/h

solitary agent
communicative agent

Figure 5.7.: Average velocities of vehicles for a scenario in that the demand is suddenly doubled

for 30 minutes and then reduced back to its former value. The communicative

agent reliably outperforms the solitary one and recovers significantly faster from the

unexpected inflow.

the simulation. This result shows, maybe unsurprisingly, that the communicative agent has a

significant advantage over the solitary agent when demands are unsteady. Note, however, that

in this particular setting, the solitary agent could probably benefit greatly from loop-detector

data.

5.4. Grid
Having scaled up the traffic infrastructure horizontally (from a single intersection to a sequence

of intersections), we now also increase the size of the infrastructure in the vertical dimension. In

this scenario we will use a grid of 3× 3 intersections as depicted in figure C.6 in appendix C.3.

5.4.1. Destination Bias
In contrast to the previous experiments, we here do not vary the demand but consider a constant,

moderate traffic inflow of a 1000 vehs/h. Instead, we will alter the origin-destination matrix to

investigate the effect of different statistics of the routes, on which vehicles traverse the network.

For the single intersection experiments, we assumed that the inflow at each of the ingoing roads

is equal and that vehicles are uniformly routed to any of the outgoing roads (except of course

the one that they entered on). In the arterial experiments, vehicles were more likely to enter and

leave the simulation on the busy main road than on the side roads. In this scenario, we keep

the uniform inflows of the single intersection scenario but change the destination probabilities

as to make vehicles more likely to stay on the road on that they enter the traffic network. We

will call this alteration in the destination statistics the ’destination bias’. A larger destination

93

5. Experiments and Results

no bias light bias high bias
destination bias

0

1

2

3

4

5

6

7

8

9

av
er

ag
e

ve
lo

cit
y

[m
/s

]

solitary agent
communicative agent

100

105

110

115

120

125

130

135

140

145

re
la

tiv
e

av
er

ag
e

ve
lo

cit
y

[%
]

relative performance

Figure 5.8.: Average velocities of vehicles for different settings of the destination bias. The

bars depict the absolute results of the two agents and the line shows their relative

performance. The benefit of V2I communication is strongest for the light bias setting.

bias increases the number of vehicles that traverse the entire grid traffic network without ever

turning.

Results

Figure 5.8 shows the average velocities for the solitary and the communicative agent and for

different strengths of the destination bias. In addition, it shows the relative performances of the

two agents. The ’no bias’ setting here assumes uniform destination statistics. At each intersection,

vehicles take left turns, right turns and go straight with relatively high probabilities. In the ’light

bias’ setting, an increased amount of vehicles stay on the same road and never turn left or right.

We here let approximately 70 % of vehicles stay on the road they entered on, and 30 % are routed

uniformly to the other outgoing roads. At each intersection, the number of vehicles that turn

left or right is decreased, whereas the number of vehicles that go straight is increased. Finally,

in the ’high bias’ settings, almost all vehicles traverse the simulation without ever turning. Left

and right turns are therefore virtually never used. Note that the light bias setting is arguably the

most realistic one if we consider the grid scenario to be part of a bigger traffic network.

As in previous experiments, we again observe that the communicative agent consistently

outperforms the solitary agent. More interesting than the absolute performance of the individual

agents, is here their relative performance. The advantage of the communicative agent over its

solitary counterpart is significantly higher for the light bias setting than for the other two settings.

In the light bias setting, the relatively rare event of a vehicle wanting to take a left turn at an

intersection can be handled more efficiently by the communicative agent through its knowledge

94

5.4. Grid

about individual vehicles. In the no bias setting, the frequency of arriving vehicles that want to

turn left is significantly higher, and in the high bias setting it is significantly lower. For higher

arrival rates at a stream, the probability of vehicles queuing up during the red phase of that

stream increases. The risk of granting the right of way to a stream at which no vehicles are

waiting therefore decreases. The advantage of the communicative agent hence shrinks when all

streams at an intersection have high arrival rates.

We conclude that the benefit of V2I communication is particularly prominent if the traffic

scenario includes streams with low arrival probabilities. In case of a vehicle from a low probability

stream arriving at an intersection, the communicative agent can allow it to pass the intersection

’on-demand’. Therefore, the communicative agent can simultaneously reduce waiting times of in-

dividual vehicles and prevent the loss of throughput due to phases being activated unnecessarily.

On the other hand, streams with high arrival probabilities are well described by their statistics,

and the communicative agent can improve only slightly over its solitary counterpart, by choosing

more adequate phase times.

5.4.2. Composite Reward Functions
After having thoroughly investigated the influence of different traffic settings, we now want to

examine the effect of different reward functions on the performance of the DRL traffic control

system. As described in section 4.4.3, we will compare the results of using only the average

velocity of vehicles as reward (like we have done until now) and using a composite reward

function. The composite reward here comprises of: the average velocity of vehicles, the flow rate,

the CO2 emissions (the SUMO emissions model assumes Euro-4 gasoline standards) and the

average quadratic amount of time that was spent waiting during the last 100 seconds (which,

according to Liu et al., 2017, loosely corresponds to driver patience). The four parts of the reward

function are weighted equally (all measures are normalised between 0 and 0.25). Note of course

that we want to maximise the average velocity and flow rate and minimise the CO2 emissions

and stress levels. The reward function therefore increases for lower CO2 and stress levels. The

performance of both systems will be assessed, based on the resulting values of all of the four

elements of the composite reward function.

Results
Figure 5.9 shows the average velocities, the flow rates, the CO2 emissions and the average stress

of drivers for the two reward functions. For each reward function, we show histograms of the

obtained data (the diagonal of the figure) and a projection of the data points on each of the

pairwise planes. We also use linear regression to show the respective pairwise correlations of

the four performance indicators. Each of the 100 data points here is the mean value of one hour

of simulated time. Table 5.3, shows the mean values of the four performance measures for the

two agents as well as their relative values.

The agent that is optimising the composite reward function performs on par or outperforms

the other agent in terms of all of the four measures. For the composite reward function, the

agent appears to find a control strategy that leads to fewer full stops of vehicles than for the

velocity reward function. This results in a slightly higher flow rate, a significantly lower average

stress and slightly lower CO2 emissions. Interestingly, the composite reward even leads to a

slightly increased average velocity. Note that, since there is no guarantee for the DRL agent to

find the optimal policy, it is possible for an agent that optimises the composite reward to find a

95

5. Experiments and Results

6

7

8

av
g.

 v
el

oc
ity

 [m
/s

]

55

60

65

70

75

flo
w

ra
te

 [%
]

100

125

150

175

CO
2 e

m
iss

io
ns

 [g
/s

]

reward function
composite
velocity only

6 7 8
avg. velocity [m/s]

10

15

20

25

av
g.

 st
re

ss
 [%

]

60 70
flow rate [%]

100 150
CO2 emissions [g/s]

10 20
avg. stress [%]

Figure 5.9.: Comparison of the average velocities, the flow rates, the CO2 emissions and the

average stress of drivers for two different reward functions. The figure shows both the

distributions of each performance measure as well as their pairwise correlation. One

reward function features only the average velocity (as in all previous experiments).

For the other function, the agent optimises a uniformly weighted sum of the displayed

variables. The composite reward results in a policy that equals or exceeds the result

of the velocity reward in terms of all performance measures.

solution with higher average velocity than if it were to optimise the velocity exclusively. However,

the difference in average velocity for the two different reward functions is negligibly small so that

we would consider the two policies to result in equal average velocities. In a further experiment,

reported in figure C.9 in appendix C.4, in which we repeated the reward function experiment for

a different traffic scenario, the resulting policy for the composite reward slightly improves the

flow rate, CO2 emissions and average stress, but resulted in slightly lower average velocities. We

conclude that our DRL approach can simultaneously optimise a wide variety of different reward

functions, and to successfully trade-off a variety of— possibly contradicting— objectives.

Analysing the leftmost column of figure 5.9, reveals that the use of a composite reward

function results in a slight decorrelation of the performance measures (manifesting in steeper

96

5.5. L’Antiga Esquerra de l’Eixample

reward function avg. velocity flow rate CO2 emissions avg. stress

composite 7.07 m
s

67.14 % 127.99 g
s

13.86 %

velocity only 6.98 m
s

65.06 % 131.52 g
s

16.85 %

relative value 101 % 103 % 97 % 82 %

Table 5.3.: Absolute and relative results of the two different reward functions in the grid scenario.

The optimisation of the composite reward results in similar or improved performance

in terms of all of the reported performance measures.

slopes of the linear regression models for the velocity reward function). It is remarkable that

the velocity reward function yields similar results in all four performance measures (except

maybe the average stress), despite not explicitly optimising the latter three. The reason for

that, clearly is the strong correlation of the respective measures, as shown in the non-diagonal

elements in figure 5.9. The agent can thus improve in terms of all performance indicators, despite

maximising only one of them. We would therefore argue that the use of composite reward

functions, which have been utilised in many publications (see section 4.3), is not necessary if all

parts of the reward function show strong positive correlations. It would be interesting to combine

antagonistic reward functions, forcing the agent to trade off different objectives. Unfortunately,

we did not find any meaningful antagonistic rewards.

In figure C.7 in appendix C.3, we show bar diagrams of the mean value of the respective

performance measures, as well as the confidence intervals. We also include the average time

that a vehicle takes for traversing the traffic network from its origin to its destination and the

average time that a vehicle spends waiting while traversing the network. These two additional

measures make interesting performance indicators but are not well suited to be used as a reward

function. The composite reward function results in a slight decrease in the average waiting time

and trip time because of a strong correlation with the flow rate and the average stress.

5.5. L’Antiga Esquerra de l’Eixample
In our final experiment, we want to apply the DRL traffic control algorithm to a more realistic

traffic network. As described in section 3.5.1, SUMO comes with an application that allows us

to import road networks from OSM data. We here choose a part of the ’L’Antiga Esquerra de

l’Eixample’ neighbourhood, in the centre of Barcelona, as an example scenario. Figure C.8 in

appendix C.4 shows the location of the neighbourhood on a city map and the extracted road

network. The zone is characterised by a grid pattern of straight roads, most of which allowing

only one direction of travel. It consists mostly of residential buildings or smaller offices, with the

exception of the large ’Hospital Clínic’ hospital on the west end of our road network.

Every intersection in the road network is controlled by a traffic light system. As all streets in

our simulation only allow for one direction of travel, phase schemes mostly consist of just two

different phases. We could, therefore, use a DRL agent that only controls the phase times of

the traffic lights. However, for the purpose of generality, we choose to use the action-space,

described in section 4.4.2 but limit the available phase options to the ones provided by the

OSM data. Since the physical dimensions of intersections are shorter and allowed velocities

are smaller than in the previous experiments, we reduce the duration of the amber period

to 4 seconds and the all-red period to 2 seconds. Note that we do not explicitly account for

97

5. Experiments and Results

pedestrians or cyclist traffic.

The dense population and central location of the area give rise to busy commuter traffic,

especially in the morning and afternoon. We here choose to run our experiments for three

different demand levels, ranging from a moderate 1000 vehs/h to a heavy 3000 vehs/h. We

empirically find these values to be on a realistic scale. Vehicles are spawned with equal probability

on every ingoing lane of the road network so that wider streets have higher inflow. Similarly,

the destination of every new vehicle is drawn from a distribution with probabilities proportional

to the number of lanes of the outgoing road. The limitation to only a small patch of the road

network gives rise to some unnatural routes and traffic volumes. For example, a vehicle may

need to drive in a U-shape, if its destination is the neighbouring parallel street of its origin. In

this case, most drivers would, of course, take a route that never enters our simulated road

network. However, since we are more concerned with the ability of our agents to handle any

traffic situation than with the realism of the simulation, we choose to allow these somewhat

unnatural routes.

Note that all aspects of the experimental setting are designed to provide a plug-and-play

architecture that is unspecific to the particular road network. We could, therefore, easily

interchange the road network.

The previous experiment showed that our DRL method is capable of optimising an aggregated

reward function. However, we struggled to design an aggregated reward function that accurately

quantifies our qualitative objectives. Figure C.9 in appendix C.4 compares the results for the

two different reward functions used in the previous experiment. Even though the composite

reward resulted in a policy that outperformed the velocity only reward’s policy in three of the

four performance measures, visual inspection revealed that the latter policy better matched our

qualitative objectives. We therefore choose to optimise only the velocity but assess the system’s

performance in terms of the average velocity, the flow rate, the CO2 emissions, the average

stress levels, the average trip time and the average waiting time of vehicles.

Results
Figure 5.9 shows the average velocities, the flow rates, the CO2 emissions, the average stress of

drivers, the average trip time and the average time spent waiting at intersections for the two

agents in the L’Antigua Esquerra de l’Eixample setting. Each bar shows the respective mean value

of 100 hours of simulated time.

The communicative agent significantly outperforms the solitary agent in terms of all six

measures for all demand scenarios (note that, for the average velocity and the flow rate, a

higher value is desirable whereas, for CO2 emissions, average stress, average trip time and

average waiting time, a lower value is better). As in previous experiments, the benefit of V2I

communication slightly decreases as demand increases; however, the difference appears to

be minute. For both agents, the policy creates green waves for vehicles on busy routes while

letting vehicles enter from less important routes in between waves (note that, due to our

origin-destination distributions, the busiest routes do not necessarily coincide with the actual

main roads). Visual inspection of the simulated environment shows that many vehicles traverse

the network without ever stopping. The availability of information about individual vehicles

enables the agent to choose more accurate phase times and to better handle streams with low

arrival rates. Table 5.4 shows the exact values of all measures as well as their relative values.

For all three demand scenarios, the communicative agent manages to allocate green time

more efficiently and to reduce waiting times by approximately 50 %. The lower waiting times

98

5.6. Convergence

1000 2000 3000
demand [vehs/h]

0

2

4

6

8
av

g.
 v

el
oc

ity
 [m

/s
]

1000 2000 3000
demand [vehs/h]

0

20

40

60

80

flo
w

ra
te

 [%
]

1000 2000 3000
demand [vehs/h]

0

50

100

150

200

250

CO
2 e

m
iss

io
ns

 [g
/s

]

1000 2000 3000
demand [vehs/h]

0

1

2

3

4

5

6

7

av
g.

 st
re

ss
 [%

]

1000 2000 3000
demand [vehs/h]

0

20

40

60

80

100

120
av

g.
 tr

ip
 ti

m
e

[s
]

1000 2000 3000
demand [vehs/h]

0

10

20

30

40

av
g.

 w
ai

tin
g

tim
e

[s
]

solitary agent communicative agent

Figure 5.10.: Comparison of the average velocities, the flow rates, the CO2 emissions and the

average stress of drivers ,the average trip time and the average time spent waiting

at intersections for the two agents in the L’Antigua Esquerra de l’Eixample setting.

The communicative agent consistently outperforms the solitary agent in terms of

all six performance indicators.

result in a higher average velocity and flow rate as well as reduced stress levels. Comparing the

reduction in trip times (25.36 s for 1000 vehs/h, 26.59 s for 2000 vehs/h and 27.33 s for 3000

vehs/h) and in waiting times (11.99 s for 1000 vehs/h, 15.53 s for 2000 vehs/h and 17.49 s for

3000 vehs/h), we observe that they do not coincide. This shows that the communicative agent

not only decreases the waiting time per stop but also the total number of stops, reducing the

need of decelerating and accelerating among vehicles and resulting in more fluent traffic. The

reduced acceleration among vehicles, alongside the diminished time that vehicles spend on the

road, result in 20 % reduction of CO2 emissions, mitigating the environmental repercussions of

congestion.

5.6. Convergence
Finally, we briefly want to review the convergence properties of the discussed experiments. In

contrast to many previous works, we chose not to show the learning phase of the DRL system

and, instead, focused on the final performance of the agent. As we consider our agents to

be trained in simulation and not in the real world, the transient phase of learning is of little

importance.

As mentioned earlier, the term ’final performance’ has to be used carefully, since it is hard to

99

5. Experiments and Results

demand agent
avg.

velocity

flow

rate

CO2

emissions

avg.

stress

avg. trip

time

avg. wait-

ing time

1000 solitary 7.01 m
s

81.93 % 67.70 g
s

4.23 % 99.65 s 23.15 s

communicative 9.47 m
s

93.41 % 53.58 g
s

0.76 % 74.29 s 11.16 s

relative value 135 % 114 % 79 % 18 % 75 % 48 %

2000 solitary 6.45 m
s

78.79 % 143.91 g
s

4.90 % 108.64 s 28.93 s

communicative 8.56 m
s

90.91 % 112.56 g
s

1.25 % 82.05 s 13.40 s

relative value 133 % 115 % 78 % 26 % 76 % 46 %

3000 solitary 5.50 m
s

73.63 % 245.33 g
s

7.13 % 127.55 s 38.16 s

communicative 6.99 m
s

84.71 % 195.14 g
s

2.77 % 100.22 s 20.67 s

relative value 127 % 115 % 80 % 39 % 79 % 54 %

Table 5.4.: Absolute and relative results of the two different agents in the l’Antigua Esquerra de

l’Eixample scenario.

determine whether the policy has converged or if the performance may increase further during

additional training. We here trained all agents until the total undiscounted reward per episode

as well as the two loss functions of the action-value function and the policy plateaued.

In general, the initial phase of training showed stagnating or even decreasing performances,

as the policy tried to maximise a very poorly approximated action-value function. As soon

as the NN better approximates its epitome, the performance starts to improve. Following

the Pareto principle, the performance first improves very quickly and then gradually reduces

convergence speed. Figure C.2 in appendix C.1 shows the development of the average velocity

for 106
training steps for the solitary agent in the single intersection scenario. Since one training

step corresponds to one second of simulated time, a real-world agent would take about 11.5

days to converge.

100

6. Summary
In this chapter, we will briefly summarise the methods that were developed in this work and

the outcomes of our experimental study thereof. Subsequently, we will outline the findings and

conclusions of our investigation. Finally, we will give a short outlook on further investigations

that might be interesting in the context of this work but were not explored here.

We developed a Deep Reinforcement Learning (DRL) agent that learns the control of multiple

traffic lights in a simulated traffic network. To that end, we framed the traffic control problem as

a Markov Decision Process (MDP) in that the agent can observe its environment, take regulating

actions and is evaluated in terms of a numerical reward signal (see section 4.4). In every timestep,

the agent selects a phase time and a subsequent phase, where available phase options are

selected as to guarantee safety. We extended the popular DDPG algorithm to introduce a method

that can cope with the discrete-continuous action-domain of the traffic control problem and

the combinatorial complexity of the centralised control of multiple intersections (see section

4.5). This approach is orthogonal to many previous works, which avoid large action-spaces by

independently optimising the signalling at single intersections (see section 4.3).

The principal goal of this work was to study the influence of Vehicle to Infrastructure (V2I)

communication on the efficacy of traffic control algorithms in mitigating traffic congestion and

delay and to investigate the capacity of the DRL framework to leverage the resulting, large

amounts of data in order to make better control decisions. To do so, we developed two different

agents: one that makes decisions based solely on timing— the so-called solitary agent— and one

that additionally incorporates the position and velocity of nearby vehicles— the communicative

agent. The solitary agent here symbolises the setting of traditional control paradigms, whereas

the communicative agent embodies the availability of V2I communication.

In a series of experiments, we showed that the availability of V2I communication enables the

communicative agent to consistently outperform its solitary counterpart. We implemented four

different scenarios: the atomic setting of only a single controlled intersection (see section 5.2), a

long arterial road that is crossed by four shorter roads (see section 5.3), a regular grid of three

by three perpendicular roads (see section 5.4) and a part of the L’Antiga Esquerra de l’Eixample

neighbourhood in Barcelona (see section 5.5).

For the single controlled intersection, we compared the two agents for a range of different

traffic volumes (see figure 5.4). For low volumes, the availability of information about nearby

vehicles enabled the communicative agent to grant the right of way to individual approaching

vehicles and thus to significantly exceed the performance of the setting without V2I communi-

101

6. Summary

cation (for the lowest tested traffic volume, the average velocity of vehicles was increased by

77 %). For larger volumes, the advantage of the communicative agent gradually decreased. As

it is straightforward to find the optimal fixed-cycle signalling strategy in this simple setting, we

also verified that the solitary agent is able to match the performance of the optimal fixed-cycle

strategy.

In further experiments, we confirmed that the advantage of the communicative agent also

holds for settings that require the coordination of traffic lights at multiple intersections. In

the arterial and the grid scenario, it demonstrated to improve the system’s efficacy by better

coordination, more accurate phase times and more intelligently managing the inflow from

side roads (see figure 5.5, 5.6 and 5.8). The benefit of V2I communication turns out to be

particularly strong when the agent has to manage streams with low arrival rates, which are not

well described by statistics. In particular, the ’blindness’ of the solitary agent often lets it grant

the right of way to empty approaches, while vehicles on busy approaches have to stop and wait

for their green phase. In contrast, the communicative agent can better manage lesser travelled

routes by granting the right of way only when it is required. For highly frequented routes, the

communicative agent can at least partly preserve its advantage by choosing more accurate phase

times and by better coordinating the intersections. Therefore, its benefit is especially strong for

low traffic volumes and decreases for higher volumes. For example, in the arterial setting we

observed a 67% increase in average velocity for the lowest tested volume and approximately 30

% increase for higher volumes.

In the arterial scenario, the communicating agent showed to handle fluctuating traffic volumes

more efficiently and to recover significantly faster from a sudden increase in demand than the

solitary agent (see figure 5.7). Furthermore, the communicating agent was trained with varying

traffic volumes to learn a single policy for all demand settings. The solitary agent, on the other

hand, needs an individual policy for every level of traffic demand in the different scenarios. This

ability to seamlessly handle a wide range of different demands puts the communicative agent at

a significant advantage in more realistic settings in which the current traffic volume is unknown.

The choice of a reward function is crucial as it ultimately defines the behaviour of the learned

agent. A particularly appealing feature of DRL methods is its potential to maximise composite

reward functions that consist of many different performance measures. This ability enables us to

implement a wide variety of diverse objectives that we require a traffic controller to accomplish.

In contrast, traditional traffic control approaches are often tailored to optimise one specific

variable such as throughput or delay. We here investigated the effects of employing such an

aggregated reward function, consisting of four distinct performance measures. The DRL agent

showed to be able to jointly optimise all four components (see figure 5.9, C.7 and C.9). Note

that, in a real-world scenario, the availability of V2I communication a necessary condition for

the application of DRL methods as it is needed to transmit the reward function to the learning

system.

In the L’Antigua Esquerra de l’Eixample setting, we demonstrated that our system can be used

to optimise real-world traffic scenarios without much effort. The traffic scenario is generated

from Open Street Map (OSM) data and the same methods could therefore quickly be applied

to other neighbourhoods, enabling rapid prototyping of DRL traffic control policies. As in other

examples, the availability of V2I communication showed to enable the traffic system to manage

traffic more efficiently (see figure 5.10). For all tested demands, we observed an approximately

30 % higher average velocity, approximately 20 % lower CO2 emissions and approximately 50 %

less waiting time at traffic lights.

102

6.1. Conclusions

6.1. Conclusions
1. The availability of Vehicle to Infrastructure (V2I) communication clearly has the potential to

improve the efficacy of traffic systems, alleviating the economic burden and environmental

repercussions of traffic congestion.

2. The Deep Reinforcement Learning (DRL) framework in general, and the here-developed

methods in particular, appear to be fully capable of leveraging the additional informa-

tion that is made available through the communication interface, to take better control

decisions and, therefore, to mitigate congestion and decrease delays.

3. Due to their model-free nature, DRL methods allow the optimisation of traffic control

policies without requiring us to accurately model the traffic scenario. This not only alleviates

the burden on traffic engineers but also mitigates the inefficiencies of the control strategy

due to approximations and limiting assumptions of the traffic model.

4. The availability of V2I communication enables the DRL agent to seamlessly handle a wide

range of different traffic volumes, as well as fluctuating traffic volumes. This puts it at an

advantage when handling more realistic traffic scenarios, in which the volume is unknown.

5. The benefit of communication is especially strong when arrival rates of some of the

controlled approaches are low, and the agent can grant the right of way to individual

vehicles. For higher traffic volumes, the communicative agent can still manages to

significantly outperform the solitary agent; however, its benefit is slightly dampened.

6. The use of composite reward functions enables the DRL system to optimise the diverse

objectives of the traffic control problem jointly. Using V2I communication, vehicles can

transmit a plethora of measures that we could optimise.

7. Due to safety issues, DRL methods are rarely ever used in real-world control systems.

However, traffic control action-spaces can easily be designed to prevent unsafe situations.

Intelligent traffic light control therefore has great potential to be among the first real-world

applications of DRL methods.

6.2. Outlook
The complexity of the traffic control problem and the sheer size of the design space of DRL

methods moves an exhaustive review of all aspects of the matter beyond the scope of this

work. In this section, we want to hint towards interesting research directions that we consider to

require further investigation:

Tangible goals and reward functions – We have shown that the DRL system can learn to

optimise both a simple and an aggregated reward function. However, designing an

appropriate reward function might be just as challenging as optimising one. Deriving

a tangible reward signal from the abstract goals that we want our traffic system to achieve

is no trivial task, and inadequate rewards may result in inefficient or even harmful policies.

Further research, therefore, needs to identify important subgoals of the traffic system and

appropriately quantify and weigh them.

103

6. Summary

Influence of different observation spaces – For our experiments, we tried out different

representations of the observation-space. Even though, technically, all representations

featured the same level of information, the resulting performance of the DRL agent varied

strongly. We are not entirely sure what makes the observation-space described in section

4.4.1 better than other approaches or if a different structure of the observational data

may have further improved our results. Additional investigation therefore is needed, to

better understand how data can be structured for a Neural Network (NN) to make sense

of it, or, alternatively, what NN architecture would be better suited to deal with our data

representation.

Explicit treatment of partial observability – We have started our work by describing the

Partially Observable Markov Decision Process (POMDP) (see section 2.2) in that an agent

may consider its entire history of past observations and actions. Our agent however, bases

its decisions only on the most recent observation. Even though we partly integrate the

agent’s past by implementing trace- and timing variables in the observation, additional

information could certainly be gained by using its entire history. It would be interesting to

experiment with models that can implement a series of past actions and observations. In

particular, replacing the feed-forward NN of our model with a recurrent NN might further

improve the performance of the agent.

Multi-agent learning – The here-developed DRL approach focuses on dealing with the scala-

bility issues of other approaches like Deep Q-Learning (DQL), and centrally learns a joint

control policy for several traffic lights. However, this approach certainly has its limits and

cannot be scaled to control the traffic system of entire cities. Furthermore, large spatial

distances between intersections strongly alleviate the need for intricate coordination

between their respective traffic light systems. The widespread application of such methods

would, therefore, require a divide-and-conquer approach in that several agents are learned,

each operating a part of the entire traffic system. To navigate the boundaries between

different agents successfully, some coordination techniquemay be necessary. Investigating

the interaction and developing coordination methods of multiple agents in a multi-agent

system would be crucial for scaling up the applicability of our methods to larger traffic

networks.

More elaborate traffic simulations – The real-world performance of a policy that is learned

in a simulated environment can only be as good as the simulation is realistic. Simulations

need to make some simplifying assumptions and thus inevitably diverge from the real

world. We designed our traffic environment, having in mind its realism; however, many

aspects of it clearly do not correspond to its epitome. In particular, the incorporation of

other entities such as pedestrians, cyclists and motorcyclists as well as a more realistic

behaviour of drivers might result in fundamentally different policies.

Real-world deployment – Being able to manage traffic in a simulated environment, of course,

is worth very little if our methods fail to handle traffic in the real world. Maybe the most

interesting further investigation would therefore be to deploy a DRL agent in a real traffic

system. Due to safety issues, such an experiment should only be conducted under the

close supervision of traffic authorities, and extensive measures should be taken to protect

all traffic participants from harm.

Two-way V2I communication – Emerging V2I communication interfaces allow the bilateral

104

6.2. Outlook

exchange of information between vehicles and the traffic infrastructure. In this work, we

used information of individual vehicles to select adequate control actions of traffic lights.

In a next step, one could allow the traffic agent to send messages to individual vehicles.

For example, sending velocity suggestions to approaching vehicles could enable the traffic

agent to actively manage traffic streams and improve traffic flow.

5G network simulator – In this work, we integrate a V2I communication interface by simply

assuming a vehicle’s information to be available to the traffic agent. An interesting addition

to the simulation would be to model the communication channel explicitly.

105

Bibliography
Allsop, R. E. (1971). “Sigset: A Computer Program for Calculating Traffic Signal Settings”. In: Traffic
Engineering & Control 2.13, pp. 58–60.

Allsop, R. E. (1976). “SIGCAP: A computer programm for assesing the traffic capacity of signal-

controlled road junctions”. In: Traffic Engineering & Control 17.819, pp. 338–341.
Amari, S.-I. (1998). “Natural Gradient Works Efficiently in Learning”. In: Neural Computation 10.2,
pp. 251–276.

Amari, S.-I. (2016). Information Geometry and Its Applications. Springer Publishing.
Arel, I., C. Liu, T. Urbanik, and A. G. Kohls (2010). “Reinforcement learning-based multi-agent

system for network traffic signal control”. In: IET Intelligent Transport Systems 4.2, pp. 128–135.
Arena, F. and G. Pau (2019). “An Overview of Vehicular Communications”. In: Future Internet 11,
p. 27.

Bakker, B., S. Whiteson, L. Kester, and and Groen Frans C A (2010). “Traffic Light Control by

Multiagent Reinforcement Learning Systems”. In: Interactive Collaborative Information Systems.
Springer Publishing, pp. 475–510.

Barth-Maron, G., M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. TB, A. Muldal, N. Heess,

and T. P. Lillicrap (2018). “Distributed Distributional Deterministic Policy Gradients”. In: arXiv
e-prints arXiv:1804.08617.

Behrisch, M., L. Bieker, J. Erdmann, and D. Krajzewicz (2011). “SUMO – Simulation of Urban

MObility: An Overview”. In: Proceedings of SIMUL 2011, The 3rd International Conference on
Advances in System Simulation, pp. 63–68.

Bellemare, M. G., W. Dabney, and R. Munos (2017). “A Distributional Perspective on Reinforcement

Learning”. In: arXiv e-prints arXiv:1707.06887.
Bellman, R. (1958). “Dynamic programming and stochastic control processes”. In: Information and
Control 1.3, pp. 228–239.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer Publishing.

Boillot, F. (1994). “Evaluation of the Real-Time Urban Traffic Control Algorithm CRONOS: First

Phase”. In: IFAC Proceedings Volumes 27.12, pp. 585–590.
Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba (2016).

“OpenAI Gym”. In: arXiv e-prints arXiv:1606.01540.

107

Bibliography

Casas, N. (2017). “Deep Deterministic Policy Gradient for Urban Traffic Light Control”. In: arXiv
e-prints arXiv:1703.09035.

Choromanska, A., M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun (2014). “The Loss Surface of

Multilayer Networks”. In: arXiv e-prints arXiv:1412.0233.
Dayan, P. and L. F. Abbott (2005). Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems. The MIT Press.

Duan, Y., X. Chen, R. Houthooft, J. Schulman, and P. Abbeel (2016). “Benchmarking Deep Rein-

forcement Learning for Continuous Control”. In: arXiv e-prints arXiv:1604.06778.
Dulac-Arnold, G., R. Evans, P. Sunehag, and B. Coppin (2015). “Reinforcement Learning in Large

Discrete Action Spaces”. In: arXiv e-prints arXiv:1512.07679.
Al-Dweik, A. J., M. Mayhew, R. Muresan, S. M. Ali, and A. Shami (2017). “Using Technology to Make

Roads Safer: Adaptive Speed Limits for an Intelligent Transportation System”. In: IEEE Vehicular
Technology Magazine 12.1, pp. 39–47.

European Comission (2017). “European Urban Mobility - Policy Context”. Brussels, Belgium.

Fawaz, H. I., G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller (2019). “Adversarial Attacks on

Deep Neural Networks for Time Series Classification”. In: arXiv e-prints arXiv:1903.07054.
Fujimoto, S., H. van Hoof, and D. Meger (2018). “Addressing Function Approximation Error in

Actor-Critic Methods”. In: arXiv e-prints arXiv:1802.09477.
Gartner, N., C. J. Messer, and A. K. Rathi (2001). Traffic flow theory: A state-of-the-art report.
Gil, J., E. Tobari, M. Lemlij, A. Rose, and A. Penn (2009). “The Differentiating Behaviour of

Shoppers: Clustering of individual movement traces in a supermarket”. In: Proceedings of
the 7th International Space Syntax Symposium.

Glorot, X. and Y. Bengio (2010). “Understanding the difficulty of training deep feedforward

neural networks”. In: Proceedings of the 13th International Conference on Artificial Intelligence
and Statistics, pp. 249–256.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. MIT Press.
Grathwohl, W., D. Choi, Y. Wu, G. Roeder, and D. K. Duvenaud (2017). “Backpropagation through

the Void: Optimizing control variates for black-box gradient estimation”. In: arXiv e-prints
arXiv:1711.00123.

Gumbel, E. J. (1954). Statistical theory of extreme values and some practical applications: a series of
lectures. Applied mathematics series. U. S. Govt. Print. Office.

Haarnoja, T., A. Zhou, P. Abbeel, and S. Levine (2018a). “Soft Actor-Critic: Off-Policy Maximum En-

tropy Deep Reinforcement Learning with a Stochastic Actor”. In: arXiv e-prints arXiv:1801.01290.
Haarnoja, T., A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P.

Abbeel, and S. Levine (2018b). “Soft Actor-Critic Algorithms and Applications”. In: arXiv e-prints
arXiv:1812.05905.

Hasselt, H. van, A. Guez, and D. Silver (2015). “Deep Reinforcement Learning with Double Q-

learning”. In: arXiv e-prints arXiv:1509.06461.
Hastie, T., R. Tibshirani, J. Friedman, and J. Franklin (2004). The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Vol. 27. Springer Publishing.

He, K., X. Zhang, S. Ren, and J. Sun (2015a). “Deep Residual Learning for Image Recognition”. In:

arXiv e-prints arXiv:1512.03385.

108

Bibliography

He, K., X. Zhang, S. Ren, and J. Sun (2015b). “Delving Deep into Rectifiers: Surpassing Human-Level

Performance on ImageNet Classification”. In: arXiv e-prints arXiv:1502.01852.
Henderson, P., R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger (2017). “Deep Reinforce-

ment Learning that Matters”. In: arXiv e-prints arXiv:1709.06560.
Henry, J., J. Farges, and J. Tuffal (1983). “The Prodyn Real Time Traffic Algorithm”. In: IFAC
Proceedings Volumes 16.4, pp. 305–310.

Hessel, M., J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,

M. G. Azar, and D. Silver (2017). “Rainbow: Combining Improvements in Deep Reinforcement

Learning”. In: arXiv 1409.4842 arXiv:1710.02298.
Hochreiter, S. and J. Schmidhuber (1997). “Long Short-Term Memory”. In: Neural Computation 9.8,
pp. 1735–1780.

Horgan, D., J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van Hasselt, and D. Silver (2018).

“Distributed Prioritized Experience Replay”. In: arXiv e-prints arXiv:1803.00933.
Hunt, P. B. and D. I. Robertson (1982). “The SCOOT on-line traffic signal optimisation technique”.

In: Traffic Engineering & Control 23.4, pp. 190–192.
Hunter, J. D. (2007). “Matplotlib: A 2D Graphics Environment”. In: Computing in Science & Engineer-
ing 9.3, pp. 90–95.

Improta, G. and G. Cantarella (1984). “Control system design for an individual signalized junction”.

In: Transportation Research Part B: Methodological 18.2, pp. 147–167.
Inrix (2018). “Inrix Global Traffic Scoreboard”.

Jang, E., S. Gu, and B. Poole (2016). “Categorical Reparameterization with Gumbel-Softmax”. In:

arXiv e-prints arXiv:1611.01144.
Kakade, S. (2001). “A Natural Policy Gradient”. In: Advances in Neural Information Processing
Systems. Vol. 14, pp. 1531–1538.

Kergaye, C., A. Stevanovic, and P. Martin (2008). “An Evaluation of SCOOT and SCATS through Mi-

crosimulation”. In: Proceedings of the 10th International Conference on Applications of Advanced
Technologies in Transportation, pp. 1166–1180.

Khamis, M., W. Gomaa, and H. El-Shishiny (2012). “Multi-Objective Traffic Light Control System

based on Bayesian Probability Interpretation”. In: IEEE Conference on Intelligent Transportation
Systems, pp. 995–1000.

Kingma, D. P. and J. Ba (2014). “Adam: A Method for Stochastic Optimization”. In: Proceedings of
the 3rd International Conference on Learning Representations.

Kingma, D. P. and M. Welling (2014). “Auto-Encoding Variational Bayes”. In: Proceedings of the 2nd
International Conference on Learning Representations.

Koller, T., F. Berkenkamp, M. Turchetta, and A. Krause (2018). “Learning-based Model Predictive

Control for Safe Exploration and Reinforcement Learning”. In: arXiv 1409.4842 arXiv:1803.08287.
Kotusevski, G. and K. Hawick (2009). “A Review of Traffic Simulation Software”. In: Research Letters
in the Information and Mathematical Sciences 13, pp. 35–54.

Krajzewicz, D. (2010). “Traffic Simulation with SUMO – Simulation of Urban Mobility”. In: Funda-
mentals of Traffic Simulation. Springer Publishing, pp. 269–293.

109

Bibliography

Krauss, S. (1998). “Microscopic modeling of traffic flow: investigation of collision free vehicle dy-

namics”. PhD thesis. DLR Deutsches Zentrum fuer Luft- und Raumfahrt; Koeln Univ. (Germany).

Mathematisch-Naturwissenschaftliche Fakultaet.

Kurakin, A., I. J. Goodfellow, and S. Bengio (2016). “Adversarial examples in the physical world”. In:

arXiv e-prints arXiv:1607.02533.
Kuyer, L., S. Whiteson, B. Bakker, and N. Vlassis (2008). “Multiagent Reinforcement Learning

for Urban Traffic Control Using Coordination Graphs”. In: Machine Learning and Knowledge
Discovery in Databases. Springer Publishing, pp. 656–671.

Lapan, M. (2018). Deep Reinforcement Learning Hands-On: Apply Modern RL Methods, with Deep
Q-Networks, Value Iteration, Policy Gradients, TRPO, AlphaGo Zero and More. Expert insight. Packt
Publishing.

LeCun, Y., P. Haffner, L. Bottou, and Y. Bengio (1999). “Object Recognition with Gradient-Based

Learning”. In: Shape, Contour and Grouping in Computer Vision. Springer Publishing, p. 319.
Liang, E., R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez, K. Goldberg, and I. Stoica (2017). “Ray

RLLib: A Composable and Scalable Reinforcement Learning Library”. In: Proceedings of the 31st
Conference on Neural Information Processing Systems.

Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra (2015).

“Continuous control with deep reinforcement learning”. In: arXiv e-prints arXiv:1509.02971.
Lin, L.-J. (1992). “Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and

Teaching”. In: Machine Learning 8.3-4, pp. 293–321.
Little, J. D. C. (1966). “The Synchronization of Traffic Signals by Mixed-Integer Linear Programming”.

In: Operations Research 14.4, pp. 568–594.
Liu, M., J. Deng, X. Ming, Xianbo Zhang, and W. Wang (2017). “Cooperative Deep Reinforcement

Learning for Traffic Signal Control”. In: Proceedings of the 23rd ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD).

Lütjens, B., M. Everett, and J. P. How (2018). “Safe Reinforcement Learning with Model Uncertainty

Estimates”. In: arXiv e-prints arXiv:1810.08700.
Maddison, C. J., A. Mnih, and Y. W. Teh (2016). “The Concrete Distribution: A Continuous Relaxation

of Discrete Random Variables”. In: arXiv e-prints arXiv:1611.00712.
Mannion, P., J. Duggan, and E. Howley (2016). “An Experimental Review of Reinforcement Learning

Algorithms for Adaptive Traffic Signal Control”. In: Autonomic Road Transport Support Systems,
pp. 47–66.

Mckinney, W. (2010). “Data Structures for Statistical Computing in Python”. In: Proceedings of the
9th Python in Science Conference, pp. 51–56.

McShane, C. (1999). “The Origins and Globalization of Traffic Control Signals”. In: Journal of Urban
History 25, pp. 379–404.

Medina, J. C. and R. F. Benekohal (2012). “Traffic signal control using reinforcement learning and

the max-plus algorithm as a coordinating strategy”. In: Proceedings of the 15th International
IEEE Conference on Intelligent Transportation Systems, pp. 596–601.

Mikami, S. and Y. Kakazu (1994). “Genetic reinforcement learning for cooperative traffic signal

control”. In: Proceedings of the 1st IEEE Conference on Evolutionary Computation. IEEE World
Congress on Computational Intelligence, pp. 223–228.

110

Bibliography

Miller, A. J. (1963). “A Computer control system for traffic networks / Alan J. Miller”. In: Proceedings
of the 2nd International Symposium on the Theory of Road Traffic Flow, pp. 200–220.

Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu

(2016). “AsynchronousMethods for Deep Reinforcement Learning”. In: arXiv e-prints arXiv:1602.01783.
Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,

A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,

D. Wierstra, S. Legg, and D. Hassabis (2015). “Human-level control through deep reinforcement

learning”. In: Nature 518, p. 529.
Mordatch, I. and P. Abbeel (2017). “Emergence of Grounded Compositional Language in Multi-

Agent Populations”. In: arXiv e-prints arXiv:1703.04908.
Mousavi, S. S., M. Schukat, and E. Howley (2017). “Traffic light control using deep policy-gradient

and value-function-based reinforcement learning”. In: IET Intelligent Transport Systems 11.7,
pp. 417–423.

Nachum, O., M. Norouzi, K. Xu, and D. Schuurmans (2017). “Trust-PCL: An Off-Policy Trust Region

Method for Continuous Control”. In: arXiv e-prints arXiv:1707.01891.
Oliveira Boschetti, D. de, A. Bazzan, B. da Silva, E. Basso, and L. Nunes (2006). “Reinforcement

Learning based Control of Traffic Lights in Non-stationary Environments: A Case Study in a

Microscopic Simulator.” In: Proceedings of the 4th European Workshop on Multi-Agent Systems.
Oord, A. van den, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner,

A. W. Senior, and K. Kavukcuoglu (2016). “WaveNet: A Generative Model for Raw Audio”. In:

arXiv e-prints arXiv:1609.03499.
Papageorgiou, M. and A. Kotsialos (2002). “Freeway ramp metering: an overview”. In: IEEE
Transactions on Intelligent Transportation Systems 3.4, pp. 271–281.

Papageorgiou, M. (2004). “Overview of Road Traffic Control Strategies”. In: IFAC Proceedings
Volumes 37.19, pp. 29–40.

Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and

A. Lerer (2017). “Automatic Differentiation in PyTorch”. In: Proceedings of the 31st Conference on
Neural Information Processing Systems.

Peramandai Govindasamy, K. (2015). “A Comparative Study on 4G and 5G Technology for Wireless

Applications”. In: IOSR Journal of Electronics and Communication Engineering 10.6, pp. 67–72.
Perez, F. and B. E. Granger (2007). “IPython: A System for Interactive Scientific Computing”. In:

Computing in Science & Engineering 9.3, pp. 21–29.
Popov, I., N. Heess, T. P. Lillicrap, R. Hafner, G. Barth-Maron, M. Vecerik, T. Lampe, Y. Tassa,

T. Erez, and M. A. Riedmiller (2017). “Data-efficient Deep Reinforcement Learning for Dexterous

Manipulation”. In: arXiv e-prints arXiv:1704.03073.
Prabuchandran, K. J., H. K. A. N, and S. Bhatnagar (2015). “Decentralized learning for traffic

signal control”. In: Proceedings of the 7th International Conference on Communication Systems
and Networks, pp. 1–6.

Rezende, D. J., S. Mohamed, and D. Wierstra (2014). “Stochastic Backpropagation and Approximate

Inference in Deep Generative Models”. In: Proceedings of the 31st International Conference on
Machine Learning. Vol. 32. 2, pp. 1278–1286.

111

Bibliography

Richter, S., D. Aberdeen, and J. Yu (2006). “Natural Actor-critic for Road Traffic Optimisation”.

In: Proceedings of the 19th International Conference on Neural Information Processing Systems,
pp. 1169–1176.

Robbins, H. and S. Monro (1951). “A Stochastic Approximation Method”. In: The Annals of Mathe-
matical Statistics 22.3, pp. 400–407.

Robertson, I. (1969). “TRANSYT method for area traffic control”. In: Traffic Engineering & Control
10, pp. 276–281.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). “Learning representations by back-

propagating errors”. In: Nature 323.6088, pp. 533–536.
Salkham, A., R. Cunningham, A. Garg, and V. Cahill (2008). “A Collaborative Reinforcement Learning

Approach to Urban Traffic Control Optimization”. In: International Conference onWeb Intelligence
and Intelligent Agent Technology. Vol. 2, pp. 560–566.

Salvatori, E. (2016). “5G und Car-to-X Schlüsseltechniken für den autonomen Straßenverkehr”. In:

ATZelektronik 11, pp. 28–33.
Schaul, T., J. Quan, I. Antonoglou, and D. Silver (2016). “Prioritized Experience Replay”. In: arXiv
e-prints arXiv:1511.05952.

Schulman, J., S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel (2015). “Trust Region Policy Optimiza-

tion”. In: arXiv e-prints arXiv:1502.05477.
Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov (2017). “Proximal Policy Optimization

Algorithms”. In: arXiv e-prints arXiv:1707.06347.
Shi, L. and K. W. Sung (2014). “Spectrum Requirement for Vehicle-to-Vehicle Communication for

Traffic Safety”. In: IEEE 79th Vehicular Technology Conference, pp. 1–5.
Shoufeng, L., L. Ximin, and D. Shiqiang (2008). “Q-Learning for Adaptive Traffic Signal Control

Based on Delay Minimization Strategy”. In: IEEE International Conference on Networking, Sensing
and Control, pp. 687–691.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,

I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis (2016). “Mastering

the game of Go with deep neural networks and tree search”. In: Nature 529, p. 484.
Silver, D., G. Lever, N. Heess, T. Degris, D. Wierstra, and M. A. Riedmiller (2014). “Deterministic

Policy Gradient Algorithms”. In: Proceedings of the 31st International Conference on International
Conference on Machine Learning, pp. 387–395.

Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,

M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and

D. Hassabis (2017). “Mastering the game of Go without human knowledge”. In: Nature 550,
p. 354.

Simsek, O., S. Algorta, and A. Kothiyal (2016). “WhyMost Decisions Are Easy in Tetris—And Perhaps

in Other Sequential Decision Problems, As Well”. In: Proceedings of the 33rd International
Conference on Machine Learning. Vol. 48, pp. 1757–1765.

Stamatiadis, C. and N. Gartner (1996). “MULTIBAND-96: A Program for Variable-Bandwidth

Progression Optimization of Multiarterial Traffic Networks”. In: Transportation Research Record
Journal of the Transportation Research Board 1554, pp. 9–17.

112

Bibliography

Sutton, R. S. and A. G. Barto (2018). Reinforcement Learning: An Introduction. Adaptive Computa-
tion and Machine Learning series. MIT Press.

Sutton, R. S. (1988). “Learning to predict by the methods of temporal differences”. In: Machine
Learning 3, pp. 9–44.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich (2014). “Going Deeper with Convolutions”. In: arXiv e-prints arXiv:1409.4842.
El-Tantawy, S., B. Abdulhai, and H. Abdelgawad (2013). “Multiagent Reinforcement Learning for

Integrated Network of Adaptive Traffic Signal Controllers (MARLIN-ATSC): Methodology and

Large-Scale Application on Downtown Toronto”. In: IEEE Transactions on Intelligent Transporta-
tion Systems 14.3, pp. 1140–1150.

El-Tantawy, S. and B. Abdulhai (2010). “An agent-based learning towards decentralized and

coordinated traffic signal control”. In: IEEE Conference on Intelligent Transportation Systems,
pp. 665–670.

El-Tantawy, S., B. Abdulhai, and H. Abdelgawad (2014). “Design of Reinforcement Learning

Parameters for Seamless Application of Adaptive Traffic Signal Control”. In: Journal of Intelligent
Transportation Systems 18.3, pp. 227–245.

Thorpe, T. L. (1998). Vehicle Traffic Light Control Using SARSA. Master’s Thesis. Computer Science
Department, Colorado State University.

Thrun, S. and A. Schwartz (1993). “Issues in Using Function Approximation for Reinforcement

Learning”. In: Proceedings of the 1993 Connectionist Models Summer School.
Treiber, M., A. Hennecke, and D. Helbing (2000). “Congested Traffic States in Empirical Observa-

tions and Microscopic Simulations”. In: Physical Review E 62, pp. 1805–1824.
Tsitsiklis, J. N. (2003). “On the Convergence of Optimistic Policy Iteration”. In: Journal of Machine
Learning Research 3, pp. 59–72.

Tsitsiklis, J., B. Van Roy, I. of Technology. Laboratory for Information, and M. Decision Systems

(1997). “An Analysis of Temporal-Difference Learning with Function Approximation”. In: IEEE
Transactions on Automatic Control 42.

Tucker, G., A. Mnih, C. J. Maddison, and J. Sohl-Dickstein (2017). “REBAR: Low-variance, unbiased

gradient estimates for discrete latent variable models”. In: arXiv e-prints arXiv:1703.07370.
Van der Pol, E. and F. A. Oliehoek (2016). “Coordinated Deep Reinforcement Learners for Traffic

Light Control”. In: Workshop on Learning, Inference and Control of Multi-Agent Systems.
Van Rossum, G. and F. L. Drake Jr (1995). Python tutorial. Centrum voor Wiskunde en Informatica
Amsterdam, The Netherlands.

Vincent, R. A. and C. P. Young (1986). “SELF-OPTIMIZING TRAFFIC SIGNAL CONTROL USINGMICRO-

PROCESSORS: THE TRRL "MOVA" STRATEGY FOR ISOLATED INTERSECTIONS”. In: Proceedings of
the 2nd international conference on road traffic control 260, pp. 102–105.

Vinitsky, E., A. Kreidieh, L. L. Flem, N. Kheterpal, K. Jang, C. Wu, F. Wu, R. Liaw, E. Liang, and

A. M. Bayen (2018). “Benchmarks for reinforcement learning in mixed-autonomy traffic”. In:

Proceedings of the 2nd Conference on Robot Learning. Vol. 87, pp. 399–409.
Walt, S. v. d., S. C. Colbert, and G. Varoquaux (2011). “The NumPy Array: A Structure for Efficient

Numerical Computation”. In: Computing in Science & Engineering 13.2, pp. 22–30.

113

Bibliography

Wegener, A., M. Piorkowski, M. Raya, H. Hellbrück, S. Fischer, and J.-P. Hubaux (2008). “TraCI:

An Interface for Coupling Road Traffic and Network Simulators”. In: Proceedings of the 11th
Communications and Networking Simulation Symposium. Vol. 155-163.

Wiering, M. (2000). “Multi-Agent Reinforcement Learning for Traffic Light Control.” In: Proceedings
of the 7th International Conference on Machine Learning, pp. 1151–1158.

Williams, R. J. (1992). “Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning”. In: Machine Learning 8.3, pp. 229–256.
Wilson, A. C., R. Roelofs, M. Stern, N. Srebro, and B. Recht (2017). “The Marginal Value of Adaptive

Gradient Methods in Machine Learning”. In: Advances in Neural Information Processing Systems
30, pp. 4148–4158.

Wu, C., A. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen (2017a). “Flow: Architecture and Bench-

marking for Reinforcement Learning in Traffic Control”. In: arXiv e-prints arXiv:1710.05465.
Wu, J., H. Sun, Z. Y. Gao, and H. Z. Zhang (2009). “Reversible lane-based traffic network op-

timization with an advanced traveller information system”. In: Engineering Optimization 41,
pp. 87–97.

Wu, Y., E. Mansimov, S. Liao, R. B. Grosse, and J. Ba (2017b). “Scalable trust-region method

for deep reinforcement learning using Kronecker-factored approximation”. In: arXiv e-prints
arXiv:1708.05144.

Young, T., D. Hazarika, S. Poria, and E. Cambria (2017). “Recent Trends in Deep Learning Based

Natural Language Processing”. In: arXiv e-prints arXiv:1708.02709.
Zhang, R., A. Ishikawa, W. Wang, B. Striner, and O. Tonguz (2018). “Intelligent Traffic Signal Control:

Using Reinforcement Learning with Partial Detection”. In: arXiv e-prints arXiv:1807.01628.

114

Appendices

115

Appendices

A. Agent4D7 Algorithm
Algorithm 1: Agent4D7
Input: Batch sizeM ; discount factor γ; replay buffer size R; initial environment steps B;

actor learning rate απ; critic learning rate αQ; n-step bootstrapping stepsN ; discrete

entropy scaling factor εdisc; continuous entropy scaling factor εcont; target network

update interval Ttarget; parameters of the categorical action-value distribution: lower

boundQmin, upper boundQmax and number of discrete bins L.

Initialise network weights (θ, ω1, ω2) using Kaiming initialisation.

Initialise target network weights (θ′, ω′1, ω
′
2)← (θ, ω1, ω2).

Initialise replay buffer B.
LaunchK agents and environments.

while True do
if len(B) ≥ B then
Sample minibatch ofM transitions of length N from the replay buffer.

Sample for each transition a′i+N ∼ πθ′(oi+N).

Compute ω′min = arg minω′
1,ω

′
2

(
mean

(
Q̂ω′

1
(oi+N , a

′
i+N)

)
,mean

(
Q̂ω′

2

(
oi+N , a

′
i+N)

))
.

Construct the target distributions Yi =
(∑N−1

n=0 γ
nri+n

)
+ γNQ̂ω′

min
(oi+N , a

′
i+N)

Note that the target distribution Yi is constructed by projecting the discounted

rewards on the bootstrapped distribution. This is done by moving the probability of

each of the discrete bins of the categorical distribution according to the Bellman

equation (see equation 4.4).

Compute actor and critic updates:

θ ← θ − απ
1

M

M∑
i=1

∇θ
(
− Q̂ω1

(
oi, a

′
i ∼ πθ(oi)

)
− εdiscHdisc

(
πθ(oi)

)
− εcontHcont

(
πθ(oi)

))
ω1 ← ω1 − αQ

1

M

M∑
i=1

∇ω1
DKL

(
Yi
∣∣∣∣ Q̂ω1

(
oi, ai

))
ω2 ← ω2 − αQ

1

M

M∑
i=1

∇ω2
DKL

(
Yi
∣∣∣∣ Q̂ω2

(
oi, ai

))

if tmod Ttarget = 0 then
Copy parameters to target networks (θ′, ω′1, ω

′
2)← (θ, ω1, ω2).

end

(Optional) Adapt απ so that theD2 metric of the new and the old policy matches the

desired value.

end
end
Agent
while True do
Sample action from policy a ∼ πθ(o) and observe reward r and new observation o′.
Store transition (o, a, r, o′) in replay buffer and delete old transitions if len(B) > R.

end

116

B. Parameter Values

B. Parameter Values
B.1. Agent4D7 Parameters

Category Parameters

training

• discount factor: γ = 0.99
• batch size: M = 256
• actor learning rate: απ = 10−3

• critic learning rate: αQ = 10−3

replay buffer
• buffer size: R = 106

• initial transitions before learning starts: B = 104

n-step bootstrapping • steps: N = 5

entropy regularisation
• discrete scaling factor: εdisc = 0.5→ 0.01 (annealed)
• continuous scaling factor: εcont = 0.01→ 0.001 (annealed)

distributional Q-value

• lower bound: Qmin = 0
• upper bound: Qmax = 100
• number of bins: L = 100

target networks • update interval: Ttarget = 1000

reparameterisation

• gumbel temperature: G = 2/3
•minimal standard deviation: σmin = 0.005
•maximal standard deviation: σmax = 0.5

learning rate adaption

• targetD2 metric: Dtarget = 0.005
• parameter of proportional controller: P = 1
•minimal learning rate: αmin = 10−6

•maximal learning rate: αmax = 10−2

distributed experience • number of simulated environments: K = 3

Table B.1.: Used parameter values of the Agent4D7 algorithm.

B.2. Traffic Environment Parameters

Parameter Value
road length 300 m
speed limit 20 m

s

number of lanes per road and direction 3

minimal phase time 5 s
maximal phase time 100 s
number of distinct phase options 8
length of amber period 5 s (4 s)
length of all red period 7 s (2 s)
number of observed vehicles through V2I 10/30
horizon (length of episode) 1 hour/2 hours
length of simulation timestep 1 s
initial vehicle velocity 5 m

s

Table B.2.: Used parameter values of the traffic environment. Numbers in brackets show differing

parameters of the l’Antiga Esquerra de l’Eixample scenario.

117

Appendices

C. Additional Figures
C.1. Single Intersection

Figure C.1.: Traffic network of the single intersection scenario.

0.0 0.2 0.4 0.6 0.8 1.0
timesteps ×106

1

2

3

4

5

6

av
er

ag
e

ve
lo

cit
y

[m
/s

]

Figure C.2.: The learning curve for the solitary agent in the single intersection scenario for 106

training steps. After an initial decrease in performance due to an unconverged

action-value function, the average velocity starts to increase and slowly converges to

its final performance.

118

C. Additional Figures

C.2. Arterial Road

Figure C.3.: Traffic network of the arterial scenario. The horizontal main road is strongly utilised,

wheras the vertical side roads are relatively quiet.

0

10
20
30
40
50
60
70
80

av
er

ag
e

wa
iti

ng
 ti

m
e

[s
]

(a) 500 vehs/h.

0

10
20
30
40
50
60
70
80

av
er

ag
e

wa
iti

ng
 ti

m
e

[s
]

(b) 1000 vehs/h.

Figure C.4.: Average waiting times for every lane in the arterial scenario for the communicative

agent for two different demand scenarios. For higher demands, vehicles on the side

roads need to wait significantly longer for a green signal, whereas the waiting times

on the main road change only marginally.

119

Appendices

0

2

4
6
8

av
er

ag
e

wa
iti

ng
 ti

m
e

[s
]

(a) Solitary agent for 200 vehs/h (figure 5.6a).

0

1

2
3
4
5

av
er

ag
e

wa
iti

ng
 ti

m
e

[s
]

(b) Communicative agent for 200 vehs/h (figure 5.6b).

0

1

2
3
4
5

av
er

ag
e

wa
iti

ng
 ti

m
e

[s
]

(c) Communicative agent for 500 vehs/h (figure C.4a).

0

1
2
3
4
5
6

av
er

ag
e

wa
iti

ng
 ti

m
e

[s
]

(d) Communicative agent for 1000 vehs/h (figure C.4b).

Figure C.5.: Width of the 95% confidence intervals for the respective plots of average waiting

time.

120

C. Additional Figures

C.3. Grid

Figure C.6.: Traffic network of the grid scenario.

avg. velocity [m/s]0

2

4

6

flow rate [%]0

20

40

60

CO2 emissions [g/s]0

50

100

avg. stress [%]0

5

10

15

avg. waiting time [s]0

20

40

60

avg. trip time [s]0

50

100

150

reward function
composite
velocity only

Figure C.7.: Comparison of the results for the two different reward functions. In addition to the

four elements of the composite reward function, the figure also shows the average

time that each vehicle spends waiting at an intersection during its trip and the

average time that vehicles need to traverse the entire network.

121

Appendices

C.4. L’Antiga Esquerra de l’Eixample

(a) Map of Barcelona. Taken from https://www.google.com/maps.

(b) The generated SUMO network. Note that we neglect some minor streets, which are not controlled by

traffic lights as their incorporation led to accidents at the uncontrolled intersections.

Figure C.8.: Traffic network of the L’Antiga Esquerra de l’Eixample scenario.

122

C. Additional Figures

4

6

8

av
g.

 v
el

oc
ity

 [m
/s

]

70

80

90

flo
w

ra
te

 [%
]

50

100

150

CO
2 e

m
iss

io
n

[g
/s

]

reward function
composite
velocity only

6.0 6.5 7.0
avg. velocity [m/s]

0

5

av
g.

 st
re

ss
 [%

]

80 90
flow rate [%]

60 80
CO2 emission [g/s]

0 5
avg. stress [%]

Figure C.9.: Comparison of the results for the two different reward functions. In addition to the

four elements of the composite reward function, the figure also shows the average

time that each vehicle spends waiting at an intersection during its trip and the

average time that vehicles need to traverse the entire network.

123

	Title page
	Table of Contents
	List of Figures
	List of Tables
	Acronyms
	Symbols

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure

	2 Reinforcement Learning
	2.1 Introduction to Reinforcement Learning
	2.2 Markov Decision Processes
	2.2.1 Value Functions
	2.2.2 Acting Optimally

	2.3 Tabular Learning
	2.3.1 Dynamic Programming
	2.3.2 Monte Carlo Methods
	2.3.3 Temporal Difference Learning

	2.4 Function Approximation
	2.4.1 Neural Network Architecture
	2.4.2 Learning Neural Network Parameters

	2.5 Deep Q-Learning
	2.6 Policy Gradient Methods
	2.6.1 The REINFORCE Algorithm
	2.6.2 Actor-Critic Methods
	2.6.3 Natural Gradients and Trust Regions

	2.7 Deterministic Policy Gradients
	2.7.1 Deep Deterministic Policy Gradients
	2.7.2 The Reparameterisation Trick
	2.7.3 Further Improvements of DDPG
	2.7.4 Soft Actor-Critic

	3 Road Traffic Control
	3.1 Traffic Lights
	3.2 Traffic Congestion
	3.3 What Makes Traffic Control Hard
	3.4 Traditional Control Methods
	3.4.1 Isolated Fixed-Time Control
	3.4.2 Coordinated Fixed-Time Control
	3.4.3 Isolated Responsive Control
	3.4.4 Coordinated Responsive Control
	3.4.5 Drawbacks of Traditional Traffic Control Strategies

	3.5 Traffic Simulation
	3.5.1 SUMO
	3.5.2 Flow

	3.6 Vehicle to Infrastructure Communication

	4 Deep Reinforcement Learning for Urban Traffic Light Control
	4.1 Advantages of RL for Traffic Light Control
	4.2 Challenges of RL for Traffic Light Control
	4.3 Related Work
	4.4 A Traffic Light Control MDP
	4.4.1 Observations
	4.4.2 Control Actions
	4.4.3 Rewards

	4.5 Agent 4D7
	4.5.1 Architecture
	4.5.2 Learning and Optimisation

	4.6 Real-World RL Traffic Control

	5 Experiments and Results
	5.1 Simulation Setup
	5.2 Single Intersection
	5.2.1 Fixed-Cycle Strategy
	5.2.2 DRL: Solitary Agent
	5.2.3 DRL: Communicative Agent

	5.3 Arterial Road
	5.3.1 Steady Demand
	5.3.2 Sudden Inflow

	5.4 Grid
	5.4.1 Destination Bias
	5.4.2 Composite Reward Functions

	5.5 L'Antiga Esquerra de l'Eixample
	5.6 Convergence

	6 Summary
	6.1 Conclusions
	6.2 Outlook

	Bibliography
	Appendices
	A Agent4D7 Algorithm
	B Parameter Values
	B.1 Agent4D7 Parameters
	B.2 Traffic Environment Parameters

	C Additional Figures
	C.1 Single Intersection
	C.2 Arterial Road
	C.3 Grid
	C.4 L'Antiga Esquerra de l'Eixample

